1,685 research outputs found

    New Fault Tolerant Multicast Routing Techniques to Enhance Distributed-Memory Systems Performance

    Get PDF
    Distributed-memory systems are a key to achieve high performance computing and the most favorable architectures used in advanced research problems. Mesh connected multicomputer are one of the most popular architectures that have been implemented in many distributed-memory systems. These systems must support communication operations efficiently to achieve good performance. The wormhole switching technique has been widely used in design of distributed-memory systems in which the packet is divided into small flits. Also, the multicast communication has been widely used in distributed-memory systems which is one source node sends the same message to several destination nodes. Fault tolerance refers to the ability of the system to operate correctly in the presence of faults. Development of fault tolerant multicast routing algorithms in 2D mesh networks is an important issue. This dissertation presents, new fault tolerant multicast routing algorithms for distributed-memory systems performance using wormhole routed 2D mesh. These algorithms are described for fault tolerant routing in 2D mesh networks, but it can also be extended to other topologies. These algorithms are a combination of a unicast-based multicast algorithm and tree-based multicast algorithms. These algorithms works effectively for the most commonly encountered faults in mesh networks, f-rings, f-chains and concave fault regions. It is shown that the proposed routing algorithms are effective even in the presence of a large number of fault regions and large size of fault region. These algorithms are proved to be deadlock-free. Also, the problem of fault regions overlap is solved. Four essential performance metrics in mesh networks will be considered and calculated; also these algorithms are a limited-global-information-based multicasting which is a compromise of local-information-based approach and global-information-based approach. Data mining is used to validate the results and to enlarge the sample. The proposed new multicast routing techniques are used to enhance the performance of distributed-memory systems. Simulation results are presented to demonstrate the efficiency of the proposed algorithms

    Resilient Routing Implementation in 2D Mesh NoC

    No full text
    With the rapid shrinking of technology and growing integration capacity, the probability of failures in Networks-on-Chip (NoCs) increases and thus, fault tolerance is essential. Moreover, the unpredictable locations of these failures may influence the regularity of the underlying topology, and a regular 2D mesh is likely to become irregular. Thus, for these failure-prone networks, a viable routing framework should comprise a topology-agnostic routing algorithm along with a cost-effective, scalable routing mechanism able to handle failures, irrespective of any particular failure patterns. Existing routing techniques designed to route irregular topologies efficiently lack flexibility (logic-based), scalability (table-based) or relaxed switch design (uLBDR-based). Designing an efficient routing implementation technique to address irregular topologies remains a pressing research problem. To address this, we present a fault resilient routing mechanism for irregular 2D meshes resulting from failures. To handle irregularities, it avoids using routing tables and employs a few fixed configuration bits per switch resulting in a scalable approach. Experiments demonstrate that the proposed approach is guaranteed to tolerate all locations of single and double-link failures and most multiple failures. Also, unlike uLBDR it is not restricted to any particular switching technique and does not replicate any extra messages. Along with fault tolerance, the proposed mechanism can achieve better network performance in fault-free cases. The proposed technique achieves graceful performance degradation during failure. Compared to uLBDR, our method has 14% less area requirements and 16% less overall power consumption

    High Performance and Power Efficient On-Chip Network Designs through Multiple Injection Ports

    Full text link
    Las redes dentro de un chip se están convirtiendo en el elemento principal de los sistemas multiprocesador. A medida que aumenta la escala de integración, más elementos de cómputo (procesadores) se incluyen en el mismo chip. Estos componentes se interconectan con una red dentro del chip que debe ofrecer latencias de transmisión ultra bajas (orden de nanosegundos) y anchos de banda elevados. El diseño, pues, de una red eficiente dentro del chip juega un papel fundamental. En la presente tesis se analizan diferentes alternativas de diseño de las redes en el chip. En particular, se hace uso de la posibilidad de utilizar diferentes puertos de inyección desde los procesadores con el fin de obtener diferentes mejoras. En primer lugar, las prestaciones aumentan al tener procesadores con distintas alternativas de inyección de tráfico. En segundo lugar, además aumenta la tolerancia a fallos frente a defectos de fabricación (mas importantes conforme avanza la tecnología). Y en tercer lugar, permite una política de apagado de componentes más agresiva que nos permita un ahorro significativo de energía. Hemos evaluado diferentes topologías derivadas del mecanismo de inyección en términos de prestaciones, coste de implementación, y ahorro de consumo. Además, hemos desarrollado simuladores específicos para las distintas técnicas utilizadas. Cada topología diseñada supone una mejora respecto a la anterior, y por supuesto, teniendo en cuenta las topologías existentes. En resumen, nuestro esfuerzo se centra en conseguir un excelente compromiso entre prestaciones, consumo y tolerancia a fallos dentro de una red en chip. Para la primera propuesta (topología NR-Mesh), se alcanzan mejoras en prestaciones de un 7\% y hasta de un 75\% en reducción de consumo de media, comparado con la malla 2D o malla de 2 dimensiones. Para la siguiente propuesta, la malla concentrada paralela (PC-Mesh), el beneficio en prestaciones que se obtiene es de hasta un 20\%, así cómo de un 60\% en reducción deCamacho Villanueva, J. (2012). High Performance and Power Efficient On-Chip Network Designs through Multiple Injection Ports [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18235Palanci

    System data communication structures for active-control transport aircraft, volume 2

    Get PDF
    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems

    Cost Effective Routing Implementations for On-chip Networks

    Full text link
    Arquitecturas de múltiples núcleos como multiprocesadores (CMP) y soluciones multiprocesador para sistemas dentro del chip (MPSoCs) actuales se basan en la eficacia de las redes dentro del chip (NoC) para la comunicación entre los diversos núcleos. Un diseño eficiente de red dentro del chip debe ser escalable y al mismo tiempo obtener valores ajustados de área, latencia y consumo de energía. Para diseños de red dentro del chip de propósito general se suele usar topologías de malla 2D ya que se ajustan a la distribución del chip. Sin embargo, la aparición de nuevos retos debe ser abordada por los diseñadores. Una mayor probabilidad de defectos de fabricación, la necesidad de un uso optimizado de los recursos para aumentar el paralelismo a nivel de aplicación o la necesidad de técnicas eficaces de ahorro de energía, puede ocasionar patrones de irregularidad en las topologías. Además, el soporte para comunicación colectiva es una característica buscada para abordar con eficacia las necesidades de comunicación de los protocolos de coherencia de caché. En estas condiciones, un encaminamiento eficiente de los mensajes se convierte en un reto a superar. El objetivo de esta tesis es establecer las bases de una nueva arquitectura para encaminamiento distribuido basado en lógica que es capaz de adaptarse a cualquier topología irregular derivada de una estructura de malla 2D, proporcionando así una cobertura total para cualquier caso resultado de soportar los retos mencionados anteriormente. Para conseguirlo, en primer lugar, se parte desde una base, para luego analizar una evolución de varios mecanismos, y finalmente llegar a una implementación, que abarca varios módulos para alcanzar el objetivo mencionado anteriormente. De hecho, esta última implementación tiene por nombre eLBDR (effective Logic-Based Distributed Routing). Este trabajo cubre desde el primer mecanismo, LBDR, hasta el resto de mecanismos que han surgido progresivamente.Rodrigo Mocholí, S. (2010). Cost Effective Routing Implementations for On-chip Networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8962Palanci

    Exploration and Design of Power-Efficient Networked Many-Core Systems

    Get PDF
    Multiprocessing is a promising solution to meet the requirements of near future applications. To get full benefit from parallel processing, a manycore system needs efficient, on-chip communication architecture. Networkon- Chip (NoC) is a general purpose communication concept that offers highthroughput, reduced power consumption, and keeps complexity in check by a regular composition of basic building blocks. This thesis presents power efficient communication approaches for networked many-core systems. We address a range of issues being important for designing power-efficient manycore systems at two different levels: the network-level and the router-level. From the network-level point of view, exploiting state-of-the-art concepts such as Globally Asynchronous Locally Synchronous (GALS), Voltage/ Frequency Island (VFI), and 3D Networks-on-Chip approaches may be a solution to the excessive power consumption demanded by today’s and future many-core systems. To this end, a low-cost 3D NoC architecture, based on high-speed GALS-based vertical channels, is proposed to mitigate high peak temperatures, power densities, and area footprints of vertical interconnects in 3D ICs. To further exploit the beneficial feature of a negligible inter-layer distance of 3D ICs, we propose a novel hybridization scheme for inter-layer communication. In addition, an efficient adaptive routing algorithm is presented which enables congestion-aware and reliable communication for the hybridized NoC architecture. An integrated monitoring and management platform on top of this architecture is also developed in order to implement more scalable power optimization techniques. From the router-level perspective, four design styles for implementing power-efficient reconfigurable interfaces in VFI-based NoC systems are proposed. To enhance the utilization of virtual channel buffers and to manage their power consumption, a partial virtual channel sharing method for NoC routers is devised and implemented. Extensive experiments with synthetic and real benchmarks show significant power savings and mitigated hotspots with similar performance compared to latest NoC architectures. The thesis concludes that careful codesigned elements from different network levels enable considerable power savings for many-core systems.Siirretty Doriast
    corecore