460 research outputs found

    Redundancy management for efficient fault recovery in NASA's distributed computing system

    Get PDF
    The management of redundancy in computer systems was studied and guidelines were provided for the development of NASA's fault-tolerant distributed systems. Fault recovery and reconfiguration mechanisms were examined. A theoretical foundation was laid for redundancy management by efficient reconfiguration methods and algorithmic diversity. Algorithms were developed to optimize the resources for embedding of computational graphs of tasks in the system architecture and reconfiguration of these tasks after a failure has occurred. The computational structure represented by a path and the complete binary tree was considered and the mesh and hypercube architectures were targeted for their embeddings. The innovative concept of Hybrid Algorithm Technique was introduced. This new technique provides a mechanism for obtaining fault tolerance while exhibiting improved performance

    Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    Get PDF
    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified

    Reliable low latency I/O in torus-based interconnection networks

    Get PDF
    In today's high performance computing environment I/O remains the main bottleneck in achieving the optimal performance expected of the ever improving processor and memory technologies. Interconnection networks therefore combines processing units, system I/O and high speed switch network fabric into a new paradigm of I/O based network. It decouples the system into computational and I/O interconnections each allowing "any-to-any" communications among processors and I/O devices unlike the shared model in bus architecture. The computational interconnection, a network of processing units (compute-nodes), is used for inter-processor communication in carrying out computation tasks, while the I/O interconnection manages the transfer of I/O requests between the compute-nodes and the I/O or storage media through some dedicated I/O processing units (I /O-nodes). Considering the special functions performed by the I/O nodes, their placement and reliability become important issues in improving the overall performance of the interconnection system. This thesis focuses on design and topological placement of I/O-nodes in torus based interconnection networks, with the aim of reducing I/O communication latency between compute-nodes and I/O-nodes even in the presence of faulty I/O-nodes. We propose an efficient and scalable relaxed quasi-perfect placement scheme using Lee distance error correction code such that compute-nodes are at distance-t or at most distance-t+1 from an I/O-node for a given t. This scheme provides a better and optimal alternative placement than quasi perfect placement when perfect placement cannot be found for a particular torus. Furthermore, in the occurrence of faulty I/O-nodes, the placement scheme is also used in determining other alternative I/O-nodes for rerouting I/O traffic from affected compute-nodes with minimal slowdown. In order to guarantee the quality of service required of inter-processor communication, a scheduling algorithm was developed at the router level to prioritize message forwarding according to inter-process and I/O messages with the former given higher priority. Our simulation results show that relaxed quasi-perfect outperforms quasi-perfect and the conventional I/O placement (where I/O nodes are concentrated at the base of the torus interconnection) with little degradation in inter-process communication performance. Also the fault tolerant redirection scheme provides a minimal slowdown, especially when the number of faulty I/O nodes is less than half of the initial available I/O nodes

    Alpha Entanglement Codes: Practical Erasure Codes to Archive Data in Unreliable Environments

    Full text link
    Data centres that use consumer-grade disks drives and distributed peer-to-peer systems are unreliable environments to archive data without enough redundancy. Most redundancy schemes are not completely effective for providing high availability, durability and integrity in the long-term. We propose alpha entanglement codes, a mechanism that creates a virtual layer of highly interconnected storage devices to propagate redundant information across a large scale storage system. Our motivation is to design flexible and practical erasure codes with high fault-tolerance to improve data durability and availability even in catastrophic scenarios. By flexible and practical, we mean code settings that can be adapted to future requirements and practical implementations with reasonable trade-offs between security, resource usage and performance. The codes have three parameters. Alpha increases storage overhead linearly but increases the possible paths to recover data exponentially. Two other parameters increase fault-tolerance even further without the need of additional storage. As a result, an entangled storage system can provide high availability, durability and offer additional integrity: it is more difficult to modify data undetectably. We evaluate how several redundancy schemes perform in unreliable environments and show that alpha entanglement codes are flexible and practical codes. Remarkably, they excel at code locality, hence, they reduce repair costs and become less dependent on storage locations with poor availability. Our solution outperforms Reed-Solomon codes in many disaster recovery scenarios.Comment: The publication has 12 pages and 13 figures. This work was partially supported by Swiss National Science Foundation SNSF Doc.Mobility 162014, 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN

    Center for Space Microelectronics Technology 1988-1989 technical report

    Get PDF
    The 1988 to 1989 Technical Report of the JPL Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center. Listed are 321 publications, 282 presentations, and 140 new technology reports and patents
    corecore