2,422 research outputs found

    Subcube embeddability and fault tolerance of augmented hypercubes

    Full text link
    Hypercube networks have received much attention from both parallel processing and communications areas over the years since they offer a rich interconnection structure with high bandwidth, logarithmic diameter, and high degree of fault tolerance. They are easily partitionable and exhibit a high degree of fault tolerance. Fault-tolerance in hypercube and hypercube-based networks received the attention of several researchers in recent years; The primary idea of this study is to address and analyze the reliability issues in hypercube networks. It is well known that the hypercube can be augmented with one dimension to replace any of the existing dimensions should any dimension fail. In this research, it is shown that it is possible to add i dimensions to the standard hypercube, Qn to tolerate (i - 1) dimension failures, where 0 \u3c i ≤ n. An augmented hypercube, Qn +(n) with n additional dimensions is introduced and compared with two other hypercube networks with the same amount of redundancy. Reliability analysis for the three hypercube networks is done using the combinatorial and Markov modeling. The MTTF values are calculated and compared for all three networks. Comparison between similar size hypercube networks show that the augmented hypercube is more robust than the standard hypercube; As a related problem, we also look at the subcube embeddability. Subcube embeddability of the hypercube can be enhanced by introducing an additional dimension. A set of new dimensions, characterized by the Hamming distance between the pairs of nodes it connects, is introduced using a measure defined as the magnitude of a dimension. An enumeration of subcubes of various sizes is presented for a dimension parameterized by its magnitude. It is shown that the maximum number of subcubes for a Qn can only be attained when the magnitude of dimension is n - 1 or n. It is further shown that the latter two dimensions can optimally increase the number of subcubes among all possible choices

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified

    Self-stabilizing wormhole routing in hypercubes

    Full text link
    Wormhole routing is an efficient technique used to communicate message packets between processors when they are not completely connected. To the best of our knowledge, this is the first attempt at designing a self-stabilizing wormhole routing algorithm for hypercubes. Our first algorithm handles all types of faults except for node/link failures. This algorithm achieves optimality in terms of routing path length by following only the preferred dimensions. In an n-dimensional hypercube, those dimensions in which source and destination address bits differ are called preferred dimensions. Our second algorithm handles topological changes. We propose an efficient scheme of rerouting flits in case of node/link failures. Similar to the first algorithm, this algorithm also tries to follow preferred dimensions if they are nonfaulty at the time of transmitting the flits. However, due to topological faults it is necessary to take non-preferred dimensions resulting in suboptimality of path selection. Formal proof of correctness for both solutions is given. (Abstract shortened by UMI.)

    Correcting soft errors online in fast fourier transform

    Get PDF
    While many algorithm-based fault tolerance (ABFT) schemes have been proposed to detect soft errors offline in the fast Fourier transform (FFT) after computation finishes, none of the existing ABFT schemes detect soft errors online before the computation finishes. This paper presents an online ABFT scheme for FFT so that soft errors can be detected online and the corrupted computation can be terminated in a much more timely manner. We also extend our scheme to tolerate both arithmetic errors and memory errors, develop strategies to reduce its fault tolerance overhead and improve its numerical stability and fault coverage, and finally incorporate it into the widely used FFTW library - one of the today's fastest FFT software implementations. Experimental results demonstrate that: (1) the proposed online ABFT scheme introduces much lower overhead than the existing offline ABFT schemes; (2) it detects errors in a much more timely manner; and (3) it also has higher numerical stability and better fault coverage

    New Fault Tolerant Multicast Routing Techniques to Enhance Distributed-Memory Systems Performance

    Get PDF
    Distributed-memory systems are a key to achieve high performance computing and the most favorable architectures used in advanced research problems. Mesh connected multicomputer are one of the most popular architectures that have been implemented in many distributed-memory systems. These systems must support communication operations efficiently to achieve good performance. The wormhole switching technique has been widely used in design of distributed-memory systems in which the packet is divided into small flits. Also, the multicast communication has been widely used in distributed-memory systems which is one source node sends the same message to several destination nodes. Fault tolerance refers to the ability of the system to operate correctly in the presence of faults. Development of fault tolerant multicast routing algorithms in 2D mesh networks is an important issue. This dissertation presents, new fault tolerant multicast routing algorithms for distributed-memory systems performance using wormhole routed 2D mesh. These algorithms are described for fault tolerant routing in 2D mesh networks, but it can also be extended to other topologies. These algorithms are a combination of a unicast-based multicast algorithm and tree-based multicast algorithms. These algorithms works effectively for the most commonly encountered faults in mesh networks, f-rings, f-chains and concave fault regions. It is shown that the proposed routing algorithms are effective even in the presence of a large number of fault regions and large size of fault region. These algorithms are proved to be deadlock-free. Also, the problem of fault regions overlap is solved. Four essential performance metrics in mesh networks will be considered and calculated; also these algorithms are a limited-global-information-based multicasting which is a compromise of local-information-based approach and global-information-based approach. Data mining is used to validate the results and to enlarge the sample. The proposed new multicast routing techniques are used to enhance the performance of distributed-memory systems. Simulation results are presented to demonstrate the efficiency of the proposed algorithms

    Fault-tolerant interconnection networks for multiprocessor systems

    Get PDF
    Interconnection networks represent the backbone of multiprocessor systems. A failure in the network, therefore, could seriously degrade the system performance. For this reason, fault tolerance has been regarded as a major consideration in interconnection network design. This thesis presents two novel techniques to provide fault tolerance capabilities to three major networks: the Baseline network, the Benes network and the Clos network. First, the Simple Fault Tolerance Technique (SFT) is presented. The SFT technique is in fact the result of merging two widely known interconnection mechanisms: a normal interconnection network and a shared bus. This technique is most suitable for networks with small switches, such as the Baseline network and the Benes network. For the Clos network, whose switches may be large for the SFT, another technique is developed to produce the Fault-Tolerant Clos (FTC) network. In the FTC, one switch is added to each stage. The two techniques are described and thoroughly analyzed
    • …
    corecore