621 research outputs found

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    Approximate Computing Survey, Part I: Terminology and Software & Hardware Approximation Techniques

    Full text link
    The rapid growth of demanding applications in domains applying multimedia processing and machine learning has marked a new era for edge and cloud computing. These applications involve massive data and compute-intensive tasks, and thus, typical computing paradigms in embedded systems and data centers are stressed to meet the worldwide demand for high performance. Concurrently, the landscape of the semiconductor field in the last 15 years has constituted power as a first-class design concern. As a result, the community of computing systems is forced to find alternative design approaches to facilitate high-performance and/or power-efficient computing. Among the examined solutions, Approximate Computing has attracted an ever-increasing interest, with research works applying approximations across the entire traditional computing stack, i.e., at software, hardware, and architectural levels. Over the last decade, there is a plethora of approximation techniques in software (programs, frameworks, compilers, runtimes, languages), hardware (circuits, accelerators), and architectures (processors, memories). The current article is Part I of our comprehensive survey on Approximate Computing, and it reviews its motivation, terminology and principles, as well it classifies and presents the technical details of the state-of-the-art software and hardware approximation techniques.Comment: Under Review at ACM Computing Survey

    Spectroscopic investigations of two-dimensional magnetic materials: transition metal trichlorides and transition metal phosphorus trichalcogenides

    Get PDF
    In this thesis, the electronic properties of two-dimensional magnetic materials, transition metal trichlorides and transition metal phosphorus trichalcogenides, are studied by means of various spectroscopic techniques including photoelectron spectroscopy (PES), electron energy-loss spectroscopy (EELS) and optical spectroscopy. The experiments on transition metal trichlorides mainly focus on manipulating the electronic structure of α−RuCl3 — a Kitaev spin liquid candidate material that, however, hosts an antiferromagnetic ground state at temperatures below 7 K. Such manipulation attempts include transition metal substitution by Cr, Ar+ sputtering of exfoliated flakes and the creation of an interface of α−RuCl3 with the organic semiconductor manganese (II) phtalocyanine (MnPc). To study the influence of transition metal substitution by Cr, the parent compounds α−RuCl3 and CrCl3, and the mixed compound Cr0.5Ru0.5Cl3 were studied by PES and EELS. The mixed compound preserves the +III oxidation state of Cr and Ru. The valence band resembles a superposition of the parent compounds and EELS reveals the appearance of a new optical absorption channel assigned to a Cr-Ru charge transfer. Ar+ sputtering decreases the chlorine content of exfoliated α−RuCl3 flakes. However, the properties of the sputtered film, namely the rate of chlorine loss and the work function, depend heavily on the initial flake thickness. The work function spans a remarkable range from Φ = 4.6 eV to 6.1 eV. The interface of α−RuCl3 with MnPc demonstrates the potential of α−RuCl3 as a strong electron acceptor. The work function and electron affinity of α−RuCl3 are characterized and the charge transfer from MnPc to α−RuCl3 is experimentally verified. In the second part of the thesis, two transition metal phosphorus trichalcogenide compounds are studied: FePS3 and NiPS3. Both are antiferromagnetic materials with FePS3 being of Ising-type and NiPS3 of anisotropic Heisenberg-type. Their electronic structure is spectroscopically investigated and the results are used as input for advanced density functional theory calculations (DFT+U) characterizing FePS3 as a Mott insulator and NiPS3 as a charge-transfer insulator. In the magnetically ordered state, magnetism and electronic properties are intertwined with the giant linear dichroism (LD) of FePS3 measured in optical transmission being the most impressive example. A microscopic understanding of the LD is provided with the DFT+U results giving confidence to the described model. For NiPS3, the origin of an extremely sharp magnetic exciton is studied bearing some analogy to the famous Zhang-Rice singlet state initially proposed for cuprates.:Contents iii List of Figures v Acronyms ix 1. Introduction 1 2. Experimental Techniques 3 2.1. Photoelectron Spectroscopy (PES) . . . . . . . . . . . . . . . . . . . 3 2.2. Three-step-model of Photoemission . . . . . . . . . . . . . . . . . . . 4 2.2.1. Photoabsorption . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2. Propagation to the Surface . . . . . . . . . . . . . . . . . . . 6 2.2.3. Escape into the Vacuum . . . . . . . . . . . . . . . . . . . . . 7 2.3. Spectral Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4. Energy-filtered Photoemission Electron Microscopy (PEEM) . . . . . 9 2.5. Background Signal of XPS and UPS Measurements . . . . . . . . . . 9 2.6. Electron Energy-loss Spectroscopy (EELS) . . . . . . . . . . . . . . . 10 2.6.1. EELS Cross Section . . . . . . . . . . . . . . . . . . . . . . . 12 2.7. The Dielectric Function . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.7.1. The Drude-Lorentz-model . . . . . . . . . . . . . . . . . . . . 16 2.7.2. Related functions . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.7.3. Kramers-Kronig relations . . . . . . . . . . . . . . . . . . . . 19 2.8. Optical Microscopy and Spectroscopy . . . . . . . . . . . . . . . . . . 20 2.8.1. Optical Microscopy . . . . . . . . . . . . . . . . . . . . . . . . 20 2.8.2. Optical Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 21 2.8.3. Optical Contrast of Thin Films . . . . . . . . . . . . . . . . . 22 2.9. Core Level Spectroscopy of Solids . . . . . . . . . . . . . . . . . . . . 25 2.9.1. Spin-orbit Splitting and Notation . . . . . . . . . . . . . . . . 25 2.9.2. Core Level Spectroscopies: XPS and EELS/XAS . . . . . . . 26 2.9.3. Multiplet and Charge Transfer Effects . . . . . . . . . . . . . 26 2.10. Atomic Force Microscopy (AFM) . . . . . . . . . . . . . . . . . . . . 29 2.11. Details on Spectrometers . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.11.1. nanoARPES . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.11.2. nanoESCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.11.3. Transmission EELS . . . . . . . . . . . . . . . . . . . . . . . . 37 3. Manipulating the Electronic Structure of α−RuCl3 41 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2. Tuning the Electronic Structure of the Trichlorine Honeycomb Lattice by Transition Metal Substitution: α−RuCl3, Cr0.5Ru0.5Cl3, CrCl3 . 47 3.2.1. Electron diffraction . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.2. Core Level Spectroscopy . . . . . . . . . . . . . . . . . . . . . 49 3.2.3. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.4. EELS Results in the Low Energy Region . . . . . . . . . . . . 52 3.2.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3. Work Function Engineering of Atomically Thin α−RuCl3 by Arsputtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.1. Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.2. Work Function . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.3. XPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.4. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.5. Discussion and Summary . . . . . . . . . . . . . . . . . . . . 64 3.4. Charge Transfer at the α−RuCl3/MnPc Interface . . . . . . . . . . . 66 3.4.1. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4.3. Discussion and Summary . . . . . . . . . . . . . . . . . . . . 73 4. Spectroscopic Investigation of NiPS3 and FePS3 75 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.1.1. Crystal Structure and Magnetic Properties . . . . . . . . . . 76 4.1.2. Electronic Structure . . . . . . . . . . . . . . . . . . . . . . . 79 4.2. FePS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2. XPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.2.3. Electron Diffraction . . . . . . . . . . . . . . . . . . . . . . . 86 4.2.4. EELS Results in the Energy Region between 4 eV and 80 eV . 87 4.2.5. EELS Results in the Low Energy Region . . . . . . . . . . . . 88 4.2.6. Optical Spectroscopy and Linear Dichroism (LD) . . . . . . . 89 4.2.7. Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 92 4.3. NiPS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.3.1. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.3.2. Core Level Spectroscopy . . . . . . . . . . . . . . . . . . . . . 98 4.3.3. Electron Diffraction . . . . . . . . . . . . . . . . . . . . . . . 101 4.3.4. EELS Results in the Energy Region between 4 eV and 70 eV . 102 4.3.5. EELS in the Low Energy Region . . . . . . . . . . . . . . . . 103 4.3.6. Multiplet theory and RIXS . . . . . . . . . . . . . . . . . . . 105 4.3.7. Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 107 5. Summary and Outlook 109 A. Appendix 111 A.1. The Pseudo-Voigt Profile . . . . . . . . . . . . . . . . . . . . . . . . . 111 A.2. Calculation of Reciprocal Lattice Vectors . . . . . . . . . . . . . . . . 111 Bibliography 113In dieser Arbeit wurden die elektronischen Eigenschaften von zweidimensionalen magnetischen Materialien, Übergangsmetall-Trichloriden und Übergangsmetall-Phosphor-Trichalkogeniden, untersucht. Dabei kamen verschiedene Spektroskopie-Techniken zum Einsatz: Photoelektronenspektroskopie (PES), Elektronen-Energieverlust-Spektroskopie (EELS) und optische Spektroskopie. Die Experimente an Übergangsmetall-Trichloriden zielen hauptsächlich auf die Manipulation der elektronischen Eigenschaften von α−RuCl3 ab. α−RuCl3 ist ein Kandidat für eine Kitaev Quantenspinflüssigkeit, das jedoch bei tiefen Temperaturen unter 7K einen antiferromagnetischen Grundzustand besitzt. Die Manipulationsversuche beinhalten die Substitution des Übergangsmetalls durch Cr, Ar+ sputtern von exfolierten Kristallflocken und die Erzeugung einer Grenzfläche zwischen α−RuCl3 und dem organischen Halbleiter Mangan (II) Phthalocyanin (MnPc). Um den Einfluss der Substitution des Übergangsmetalls durch Cr zu untersuchen, wurden die Ausgangsverbindungen α−RuCl3 und CrCl3, und die gemischte Verbindung Cr0.5Ru0.5Cl3 mittels PES und EELS untersucht. In der gemischten Verbindung liegen Cr und Ru weiterhin mit Oxidationszahl +III vor. Das Valenzband lässt sich als Überlagung der Ausgangsverbindungen darstellen und EELS Daten zeigen einen neuen optischen Absorptionskanal durch Ladungstransfer von Cr zu Ru. Ar+ sputtern reduziert den Chloranteil von exfolierten α−RuCl3-Flocken. Die Eigenschaften der gesputterten Filme, insbesondere Austrittsarbeit und Chlorverlust, hängen jedoch stark von der ursprünglichen Dicke der exfolierten Flocke ab. Die Austrittsarbeit zeigt eine beachtliche Spanne von Φ = 4.6 eV bis 6.1 eV. Die Grenzfläche von α−RuCl3 mit MnPc demonstriert das Potential von α−RuCl3 als starken Elektronenakzeptor. Die Austrittsarbeit und die Elektronenaffinität von α−RuCl3 wurden charakterisiert und der Ladungstransfer von MnPc zu α−RuCl3 wurde experimentell bestätigt. Im zweiten Teil der Arbeit werden zwei Vertreter der Übergangsmetall-Phosphor-Trichalkogeniden untersucht: FePS3 und NiPS3. Beide Materialien sind antiferromagnetisch, wobei FePS3 dem Ising-Typ entspricht und NiPS3 einem anisotropen Heisenberg-Modell. Die elektronische Struktur der beiden Materialien wurde durch spektroskopische Methoden untersucht und als Grundlage für DFT+U Rechnungen verwendet, wodurch FePS3 als Mott-Isolator und NiPS3 als Ladungstransfer-Isolator charakterisiert wurden. Im magnetisch geordneten Zustand sind elektronische und magnetische Eigenschaften verflochten, das sich am eindrucksvollsten im großen linearen dichroismus (LD) Effekt von FePS3 gemessen in optischer Transmission zeigt. Ein mikroskopisches Modell zur Erklärung des LD wird beschrieben und durch Ergebnisse aus DFT+U Rechnungen unterlegt. Bei NiPS3 wurde die Ursache für ein energetisch extrem scharfes, magnetisches Exziton untersucht, das Analogien zum bekannten Zhang-Rice-Singulett aufweist, welches ursprünglich für Kuprate vorgeschlagen wurde.:Contents iii List of Figures v Acronyms ix 1. Introduction 1 2. Experimental Techniques 3 2.1. Photoelectron Spectroscopy (PES) . . . . . . . . . . . . . . . . . . . 3 2.2. Three-step-model of Photoemission . . . . . . . . . . . . . . . . . . . 4 2.2.1. Photoabsorption . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2. Propagation to the Surface . . . . . . . . . . . . . . . . . . . 6 2.2.3. Escape into the Vacuum . . . . . . . . . . . . . . . . . . . . . 7 2.3. Spectral Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4. Energy-filtered Photoemission Electron Microscopy (PEEM) . . . . . 9 2.5. Background Signal of XPS and UPS Measurements . . . . . . . . . . 9 2.6. Electron Energy-loss Spectroscopy (EELS) . . . . . . . . . . . . . . . 10 2.6.1. EELS Cross Section . . . . . . . . . . . . . . . . . . . . . . . 12 2.7. The Dielectric Function . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.7.1. The Drude-Lorentz-model . . . . . . . . . . . . . . . . . . . . 16 2.7.2. Related functions . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.7.3. Kramers-Kronig relations . . . . . . . . . . . . . . . . . . . . 19 2.8. Optical Microscopy and Spectroscopy . . . . . . . . . . . . . . . . . . 20 2.8.1. Optical Microscopy . . . . . . . . . . . . . . . . . . . . . . . . 20 2.8.2. Optical Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 21 2.8.3. Optical Contrast of Thin Films . . . . . . . . . . . . . . . . . 22 2.9. Core Level Spectroscopy of Solids . . . . . . . . . . . . . . . . . . . . 25 2.9.1. Spin-orbit Splitting and Notation . . . . . . . . . . . . . . . . 25 2.9.2. Core Level Spectroscopies: XPS and EELS/XAS . . . . . . . 26 2.9.3. Multiplet and Charge Transfer Effects . . . . . . . . . . . . . 26 2.10. Atomic Force Microscopy (AFM) . . . . . . . . . . . . . . . . . . . . 29 2.11. Details on Spectrometers . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.11.1. nanoARPES . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.11.2. nanoESCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.11.3. Transmission EELS . . . . . . . . . . . . . . . . . . . . . . . . 37 3. Manipulating the Electronic Structure of α−RuCl3 41 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2. Tuning the Electronic Structure of the Trichlorine Honeycomb Lattice by Transition Metal Substitution: α−RuCl3, Cr0.5Ru0.5Cl3, CrCl3 . 47 3.2.1. Electron diffraction . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.2. Core Level Spectroscopy . . . . . . . . . . . . . . . . . . . . . 49 3.2.3. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.4. EELS Results in the Low Energy Region . . . . . . . . . . . . 52 3.2.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3. Work Function Engineering of Atomically Thin α−RuCl3 by Arsputtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.1. Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.2. Work Function . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.3. XPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.4. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.5. Discussion and Summary . . . . . . . . . . . . . . . . . . . . 64 3.4. Charge Transfer at the α−RuCl3/MnPc Interface . . . . . . . . . . . 66 3.4.1. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4.3. Discussion and Summary . . . . . . . . . . . . . . . . . . . . 73 4. Spectroscopic Investigation of NiPS3 and FePS3 75 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.1.1. Crystal Structure and Magnetic Properties . . . . . . . . . . 76 4.1.2. Electronic Structure . . . . . . . . . . . . . . . . . . . . . . . 79 4.2. FePS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.2. XPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.2.3. Electron Diffraction . . . . . . . . . . . . . . . . . . . . . . . 86 4.2.4. EELS Results in the Energy Region between 4 eV and 80 eV . 87 4.2.5. EELS Results in the Low Energy Region . . . . . . . . . . . . 88 4.2.6. Optical Spectroscopy and Linear Dichroism (LD) . . . . . . . 89 4.2.7. Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 92 4.3. NiPS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.3.1. UPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.3.2. Core Level Spectroscopy . . . . . . . . . . . . . . . . . . . . . 98 4.3.3. Electron Diffraction . . . . . . . . . . . . . . . . . . . . . . . 101 4.3.4. EELS Results in the Energy Region between 4 eV and 70 eV . 102 4.3.5. EELS in the Low Energy Region . . . . . . . . . . . . . . . . 103 4.3.6. Multiplet theory and RIXS . . . . . . . . . . . . . . . . . . . 105 4.3.7. Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 107 5. Summary and Outlook 109 A. Appendix 111 A.1. The Pseudo-Voigt Profile . . . . . . . . . . . . . . . . . . . . . . . . . 111 A.2. Calculation of Reciprocal Lattice Vectors . . . . . . . . . . . . . . . . 111 Bibliography 11

    Digital agriculture: research, development and innovation in production chains.

    Get PDF
    Digital transformation in the field towards sustainable and smart agriculture. Digital agriculture: definitions and technologies. Agroenvironmental modeling and the digital transformation of agriculture. Geotechnologies in digital agriculture. Scientific computing in agriculture. Computer vision applied to agriculture. Technologies developed in precision agriculture. Information engineering: contributions to digital agriculture. DIPN: a dictionary of the internal proteins nanoenvironments and their potential for transformation into agricultural assets. Applications of bioinformatics in agriculture. Genomics applied to climate change: biotechnology for digital agriculture. Innovation ecosystem in agriculture: Embrapa?s evolution and contributions. The law related to the digitization of agriculture. Innovating communication in the age of digital agriculture. Driving forces for Brazilian agriculture in the next decade: implications for digital agriculture. Challenges, trends and opportunities in digital agriculture in Brazil

    University of Windsor Graduate Calendar 2023 Spring

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorgraduatecalendars/1027/thumbnail.jp

    Topology, Correlation, and Information in Designer Quantum Systems

    Get PDF
    This thesis discusses the use of subgap and boundary modes for quantum engineering of novel phases, devices and response characteristics. It is comprised of four separate topics: quantum magnetism in Yu-Shiba-Rusinov chains, single-atom Josephson diodes, readout ofMajorana qubits, and surface photogalvanic response inWeyl semimetals. Chains of magnetic adatoms on superconductors have been discussed as promising systems for realizingMajorana end states. Here,we showthat dilute Yu-Shiba-Rusinov (YSR) chains are also a versatile platform for quantum magnetism and correlated electron dynamics, with widely adjustable spin values and couplings. Focusing on subgap excitations, we derive an extended t − J model for dilute quantum YSR chains and use it to study the phase diagram as well as tunneling spectra. We explore the implications of quantum magnetism for the formation of a topological superconducting phase, contrasting it to existing models assuming classical spin textures. Current-biased Josephson junctions exhibit hysteretic transitions between dissipative and superconducting states as characterized by switching and retrapping currents. Here, we develop a theory for diode-like effects in the switching and retrapping currents ofweakly-damped Josephson junctions. We find that while the diode-like behavior of switching currents is rooted in asymmetric current-phase relations, nonreciprocal retrapping currents originate in asymmetric quasiparticle currents. These different origins also imply distinctly different symmetry requirements. We illustrate our results by a microscopic model for junctions involving YSR subgap states. Our theory provides significant guidance in identifying the microscopic origin of nonreciprocities in Josephson junctions. Schemes for topological quantum computation withMajorana bound states rely heavily on the ability to measure products ofMajorana operators projectively. Here,weemployMarkovian quantum measurement theory, including the readout device, to analyze such measurements. Specifically, we focus on the readout of Majorana qubits via continuous charge sensing of a tunnel-coupled quantum dot by a quantum point contact. We show that projective measurements of Majorana products can be implemented by continuous charge sensing under quite general circumstances. Essential requirements are that a combined local parity ˆπ, involving the quantum dot charge along with the Majorana product of interest, be conserved, and that the two eigenspaces of the combined parity ˆπ generate distinguishable measurement signals. The photogalvanic effect requires the intrinsic symmetry of the medium to be sufficiently low, which strongly limits candidate materials for this effect.We explore how inWeyl semimetals the photogalvanic effect can be enabled and controlled by design of Fermi arc states at the material surface. Specifically, we provide a theory of ballistic photogalvanic current in a Weyl semimetal slab. We show that the confinement-induced response is tightly linked to the configuration of Fermi-arc surface states, thus inheriting the same directionality and sensitivity to boundary conditions. In principle this enables the control of the photogalvanic response through manipulation at the surface only

    Exotic Ground States and Dynamics in Constrained Systems

    Get PDF
    The overarching theme of this thesis is the question of how constraints influence collective behavior. Constraints are crucial in shaping both static and dynamic properties of systems across diverse areas within condensed matter physics and beyond. For example, the simple geometric constraint that hard particles cannot overlap at high density leads to slow dynamics and jamming in glass formers. Constraints also arise effectively at low temperature as a consequence of strong competing interactions in magnetic materials, where they give rise to emergent gauge theories and unconventional magnetic order. Enforcing constraints artificially in turn can be used to protect otherwise fragile quantum information from external noise. This thesis in particular contains progress on the realization of different unconventional phases of matter in constrained systems. The presentation of individual results is organized by the stage of realization of the respective phase. Novel physical phenomena after conceptualization are often exemplified in simple, heuristic models bearing little resemblance of actual matter, but which are interesting enough to motivate efforts with the final goal of realizing them in some way in the lab. One form of progress is then to devise refined models, which retain a degree of simplification while still realizing the same physics and improving the degree of realism in some direction. Finally, direct efforts in realizing either the original models or some refined version in experiment today are mostly two-fold. One route, having grown in importance rapidly during the last two decades, is via the engineering of artificial systems realizing suitable models. The other, more conventional way is to search for realizations of novel phases in materials. The thesis is divided into three parts, where Part I is devoted to the study of two simple models, while artificial systems and real materials are the subject of Part II and Part III respectively. Below, the content of each part is summarized in more detail. After a general introduction to entropic ordering and slow dynamics we present a family of models devised as a lattice analog of hard spheres. These are often studied to explore whether low-dimensional analogues of mean-field glass- and jamming transitions exist, but also serve as the canonical model systems for slow dynamics in granular materials more generally. Arguably the models in this family do not offer a close resemblance of actual granular materials. However, by studying their behavior far from equilibrium, we observe the onset of slow dynamics and a kinetic arrest for which, importantly, we obtain an essentially complete analytical and numerical understanding. Particularly interesting is the fact that this understanding hinges on the (in-)ability to anneal topological defects in the presence of a hardcore constraints, which resonates with some previous proposals for an understanding of the glass transition. As another example of anomalous dynamics arising in a magnetic system, we also present a detailed study of a two-dimensional fracton spin liquid. The model is an Ising system with an energy function designed to give rise to an emergent higher-rank gauge theory at low energy. We show explicitly that the number of zero-energy states in the model scales exponentially with the system size, establishing a finite residual entropy. A purpose-built cluster Monte-Carlo algorithm makes it possible to study the behavior of the model as a function of temperature. We show evidence for a first order transition from a high-temperature paramagnet to a low-temperature phase where correlations match predictions of a higher-rank coulomb phase. Turning away from heuristic models, the second part of the thesis begins with an introduction to quantum error correction, a scheme where constraints are artificially imposed in a quantum system through measurement and feedback. This is done in order to preserve quantum information in the presence of external noise, and is widely believed to be necessary in order to one day harness the full power of quantum computers. Given a certain error-correcting code as well as a noise model, a particularly interesting quantity is the threshold of the code, that is the critical amount of external noise below which quantum error correction becomes possible. For the toric code under independent bit- and phase-flip noise for example, the threshold is well known to map to the paramagnet to ferromagnet transition of the two-dimensional random-bond Ising model along the Nishimori line. Here, we present the first generalization of this mapping to a family of codes with finite rate, that is a family where the number of encoded logical qubits grows linearly with the number of physical qubits. In particular, we show that the threshold of hyperbolic surface codes maps to a paramagnet to ferromagnet transition in what we call the 'dual'' random-bond Ising model on regular tessellations of compact hyperbolic manifolds. This model is related to the usual random-bond Ising model by the Kramers-Wannier duality but distinct from it even on self-dual tessellations. As a corollary, we clarify long-standing issues regarding self-duality of the Ising model in hyperbolic space. The final part of the thesis is devoted to the study of material candidates of quantum spin ice, a three-dimensional quantum spin liquid. The work presented here was done in close collaboration with experiment and focuses on a particular family of materials called dipolar-octupolar pyrochlores. This family of materials is particularly interesting because they might realize novel exotic quantum states such as octupolar spin liquids, while at the same time being described by a relatively simple model Hamiltonian. This thesis contains a detailed study of ground state selection in dipolar-octupolar pyrochlore magnets and its signatures as observable in neutron scattering. First, we present evidence that the two compounds Ce2Zr2O7 and Ce2Sn2O7 despite their similar chemical composition realize an exotic quantum spin liquid state and an ordered state respectively. Then, we also study the ground-state selection in dipolar-octupolar pyrochlores in a magnetic field. Most importantly, we show that the well-known effective one-dimensional physics -- arising when the field is applied along a certain crystallographic axis -- is expected to be stable at experimentally relevant temperatures. Finally, we make predictions for neutron scattering in the large-field phase and compare these to measurements on Ce2Zr2O7

    Dependability for declarative mechanisms: neural networks in autonomous vehicles decision making.

    Get PDF
    Despite being introduced in 1958, neural networks appeared in numerous applications of different fields in the last decade. This change was possible thanks to the reduced costs of computing power required for deep neural networks, and increasing available data that provide examples for training sets. The 2012 ImageNet image classification competition is often used as a example to describe how neural networks became at this time good candidates for applications: during this competition a neural network based solution won for the first time. In the following editions, all winning solutions were based on neural networks. Since then, neural networks have shown great results in several non critical applications (image recognition, sound recognition, text analysis, etc...). There is a growing interest to use them in critical applications as their ability to generalize makes them good candidates for applications such as autonomous vehicles, but standards do not allow that yet. Autonomous driving functions are currently researched by the industry with the final objective of producing in the near future fully autonomous vehicles, as defined by the fifth level of the SAE international (Society of Automotive Engineers) classification. Autonomous driving process is usually decomposed into four different parts: the where sensors get information from the environment, the where the data from the different sensors is merged into one representation of the environment, the that uses the representation of the environment to decide what should be the vehicles behavior and the commands to send to the actuators and finally the part that implements these commands. In this thesis, following the interest of the company Stellantis, we will focus on the decision part of this process, considering neural network based solution. Automotive being a safety critical application, it is required to implement and ensure the dependability of the systems, and this is why neural networks use is not allowed at the moment: their lack of safety forbid their use in such applications. Dependability methods for classical software systems are well known, but neural networks do not have yet similar dependable mechanisms to guarantee their trust. This problem is due to several reasons, among them the difficulty to test applications with a quasi-infinite operational domain and whose functions are hard to define exhaustively in the specifications. Here we can find the motivation of this thesis: how can we ensure the dependability of neural networks in the context of decision for autonomous vehicles? Research is now being conducted on the topic of dependability and safety of neural networks with several approaches being considered and our research is motivated by the great potential in safety critical applications mentioned above. In this thesis, we will focus on one category of method that seems to be a good candidate to ensure the dependability of neural networks by solving some of the problems of testing: the formal verification for neural networks. These methods aim to prove that a neural network respects a safety property on an entire range of its input and output domains. Formal verification is already used in other domains and is seen as a trusted method to give confidence in a system, but it remains for the moment a research topic for neural networks with currently no industrial applications. The main contributions of this thesis are the following: a proposal of a characterization of neural network from a software development perspective, and a corresponding classification of their faults, errors and failures, the identification of a potential threat to the use of formal verification. This threat is the erroneous neural network model problem, that may lead to trust a formally validated safety property that does not hold in real life, the realization of an experiment that implements a formal verification for neural networks in an autonomous driving application that is to the best of our knowledge the closest to industrial use. For this application, we chose to work with an ACC (Adaptive Cruise Control) function, which is an autonomous driving function that performs the longitudinal control of a vehicle. The experiment is conducted with the use of a simulator and a neural network formal verification tool. The other contributions of the thesis are the following: theoretical example of the erroneous neural network model problem and a practical example in our autonomous driving experiment, a proposal of detection and recovery mechanisms as a solution to the erroneous model problem mentioned above, an implementation of these detection and recovery mechanisms in our autonomous driving experiment and a discussion about difficulties and possible processes for the implementation of formal verification for neural networks that we developed during our experiments

    University of Windsor Graduate Calendar 2023 Winter

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorgraduatecalendars/1026/thumbnail.jp

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore