2,203 research outputs found

    Outlier detection techniques for wireless sensor networks: A survey

    Get PDF
    In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a comparative table to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier identity, and outlier degree

    Outlier Detection Techniques For Wireless Sensor Networks: A Survey

    Get PDF
    In the field of wireless sensor networks, measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the multivariate nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a decision tree to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier degree

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    Context-Capture Multi-Valued Decision Fusion With Fault Tolerant Capability For Wireless Sensor Networks

    Full text link
    Wireless sensor networks (WSNs) are usually utilized to perform decision fusion of event detection. Current decision fusion schemes are based on binary valued decision and do not consider bursty contextcapture. However, bursty context and multi-valued data are important characteristics of WSNs. One on hand, the local decisions from sensors usually have bursty and contextual characteristics. Fusion center must capture the bursty context information from the sensors. On the other hand, in practice, many applications need to process multi-valued data, such as temperature and reflection level used for lightening prediction. To address these challenges, the Markov modulated Poisson process (MMPP) and multi-valued logic are introduced into WSNs to perform context-capture multi-valued decision fusion. The overall decision fusion is decomposed into two parts. The first part is the context-capture model for WSNs using superposition MMPP. Through this procedure, the fusion center has a higher probability to get useful local decisions from sensors. The second one is focused on multi-valued decision fusion. Fault detection can also be performed based on MVL. Once the fusion center detects the faulty nodes, all their local decisions are removed from the computation of the likelihood ratios. Finally, we evaluate the capability of context-capture and fault tolerant. The result supports the usefulness of our scheme.Comment: 13 pages, 7 figure

    Time constrained fault tolerance and management framework for k-connected distributed wireless sensor networks based on composite event detection

    Get PDF
    Wireless sensor nodes themselves are exceptionally complex systems where a variety of components interact in a complex way. In enterprise scenarios it becomes highly important to hide the details of the underlying sensor networks from the applications and to guarantee a minimum level of reliability of the system. One of the challenges faced to achieve this level of reliability is to overcome the failures frequently faced by sensor networks due to their tight integration with the environment. Failures can generate false information, which may trigger incorrect business processes, resulting in additional costs. Sensor networks are inherently fault prone due to the shared wireless communication medium. Thus, sensor nodes can lose synchrony and their programs can reach arbitrary states. Since on-site maintenance is not feasible, sensor network applications should be local and communication-efficient self-healing. Also, as per my knowledge, no such general framework exist that addresses all the fault issues one may encounter in a WSN, based on the extensive, exhaustive and comprehensive literature survey in the related areas of research. As one of the main goals of enterprise applications is to reduce the costs of business processes, a complete and more general Fault Tolerance and management framework for a general WSN, irrespective of the node types and deployment conditions is proposed which would help to mitigate the propagation of failures in a business environment, reduce the installation and maintenance costs and to gain deployment flexibility to allow for unobtrusive installation

    A New Method for Node Fault Detection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) are an important tool for monitoring distributed remote environments. As one of the key technologies involved in WSNs, node fault detection is indispensable in most WSN applications. It is well known that the distributed fault detection (DFD) scheme checks out the failed nodes by exchanging data and mutually testing among neighbor nodes in this network., but the fault detection accuracy of a DFD scheme would decrease rapidly when the number of neighbor nodes to be diagnosed is small and the node's failure ratio is high. In this paper, an improved DFD scheme is proposed by defining new detection criteria. Simulation results demonstrate that the improved DFD scheme performs well in the above situation and can increase the fault detection accuracy greatly

    Fault tolerant radiation monitoring system using wireless sensor and actor network in a nuclear facility

    Get PDF
    In nuclear facilities, the reading of the sensors is very important in the assessments of the system state. The existence of an abnormal state could be caused by a failure in the sensor itself instead of a failure in the system. So, being unable to identify the main cause of the “abnormal state” and take proper actions may end in unnecessary shutdown for the nuclear facility that may have expensive economic consequences. That is why, it is extremely important for a supervision and control system to identify the case where the failure in the sensor is the main cause for the existence of an abnormal state. In this paper, a system based on a wireless sensor network is proposed to monitor the radiation levels around and inside a nuclear facility. A new approach for validating the sensor readings is proposed and investigated using the Castalia simulator
    corecore