1,061 research outputs found

    Exploitation of Data Correlation and Performance Enhancement in Wireless Sensor Networks

    Get PDF
    With the combination of wireless communications and embedded system, lots of progress has been made in the area of wireless sensor networks (WSNs). The networks have already been widely deployed, due to their self-organization capacity and low-cost advantage. However, there are still some technical challenges needed to be addressed. In the thesis, three algorithms are proposed in improving network energy efficiency, detecting data fault and reducing data redundancy. The basic principle behind the proposed algorithms is correlation in the data collected by WSNs. The first sensor scheduling algorithm is based on the spatial correlation between neighbor sensor readings. Given the spatial correlation, sensor nodes are clustered into groups. At each time instance, only one node within each group works as group representative, namely, sensing and transmitting sensor data. Sensor nodes take turns to be group representative. Therefore, the energy consumed by other sensor nodes within the same group can be saved. Due to the continuous nature of the data to be collected, temporal and spatial correlation of sensor data has been exploited to detect the faulty data. By exploitation of temporal correlation, the normal range of upcoming sensor data can be predicted by the historical observations. Based on spatial correlation, weighted neighbor voting can be used to diagnose whether the value of sensor data is reliable. The status of the sensor data, normal or faulty, is decided by the combination of these two proposed detection procedures. Similar to the sensor scheduling algorithm, the recursive principal component analysis (RPCA) based algorithm has been studied to detect faulty data and aggregate redundant data by exploitation of spatial correlation as well. The R-PCA model is used to process the sensor data, with the help of squared prediction error (SPE) score and cumulative percentage formula. When SPE score of a collected datum is distinctly larger than that of normal data, faults can be detected. The data dimension is reduced according to the calculation result of cumulative percentage formula. All the algorithms are simulated in OPNET or MATLAB based on practical and synthetic datasets. Performances of the proposed algorithms are evaluated in each chapter

    Distributed Real-time Anomaly Detection in Networked Industrial Sensing Systems

    No full text
    Reliable real-time sensing plays a vital role in ensuring the reliability and safety of industrial cyber-physical systems (CPSs) such as wireless sensor and actuator networks. For many reasons, such as harsh industrial environments, fault-prone sensors, or malicious attacks, sensor readings may be abnormal or faulty. This could lead to serious system performance degradation or even catastrophic failure. Current anomaly detection approaches are either centralized and complicated or restricted due to strict assumptions, which are not suitable for practical large-scale networked industrial sensing systems (NISSs), where sensing devices are connected via digital communications, such as wireless sensor networks or smart grid systems. In this paper, we introduce a fully distributed general anomaly detection (GAD) scheme, which uses graph theory and exploits spatiotemporal correlations of physical processes to carry out real-time anomaly detection for general large-scale NISSs. We formally prove the scalability of our GAD approach and evaluate the performance of GAD for two industrial applications: building structure monitoring and smart grids. Extensive trace-driven simulations validate our theoretical analysis and demonstrate that our approach can significantly outperform state-of-the-art approaches in terms of detection accuracy and efficiency

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Structure and topology of transcriptional regulatory networks and their applications in bio-inspired networking

    Get PDF
    Biological networks carry out vital functions necessary for sustenance despite environmental adversities. Transcriptional Regulatory Network (TRN) is one such biological network that is formed due to the interaction between proteins, called Transcription Factors (TFs), and segments of DNA, called genes. TRNs are known to exhibit functional robustness in the face of perturbation or mutation: a property that is proven to be a result of its underlying network topology. In this thesis, we first propose a three-tier topological characterization of TRN to analyze the interplay between the significant graph-theoretic properties of TRNs such as scale-free out-degree distribution, low graph density, small world property and the abundance of subgraphs called motifs. Specifically, we pinpoint the role of a certain three-node motif, called Feed Forward Loop (FFL) motif in topological robustness as well as information spread in TRNs. With the understanding of the TRN topology, we explore its potential use in design of fault-tolerant communication topologies. To this end, we first propose an edge rewiring mechanism that remedies the vulnerability of TRNs to the failure of well-connected nodes, called hubs, while preserving its other significant graph-theoretic properties. We apply the rewired TRN topologies in the design of wireless sensor networks that are less vulnerable to targeted node failure. Similarly, we apply the TRN topology to address the issues of robustness and energy-efficiency in the following networking paradigms: robust yet energy-efficient delay tolerant network for post disaster scenarios, energy-efficient data-collection framework for smart city applications and a data transfer framework deployed over a fog computing platform for collaborative sensing --Abstract, page iii

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Distributed scheduling algorithms for LoRa-based wide area cyber-physical systems

    Get PDF
    Low Power Wide Area Networks (LPWAN) are a class of wireless communication protocols that work over long distances, consume low power and support low datarates. LPWANs have been designed for monitoring applications, with sparse communication from nodes to servers and sparser from servers to nodes. Inspite of their initial design, LPWANs have the potential to target applications with higher and stricter requirements like those of Cyber-Physical Systems (CPS). Due to their long-range capabilities, LPWANs can specifically target CPS applications distributed over a wide-area, which is referred to as Wide-Area CPS (WA-CPS). Augmenting WA-CPSs with wireless communication would allow for more flexible, low-cost and easily maintainable deployment. However, wireless communications come with problems like reduced reliability and unpredictable latencies, making them harder to use for CPSs. With this intention, this thesis explores the use of LPWANs, specifically LoRa, to meet the communication and control requirements of WA-CPSs. The thesis focuses on using LoRa due to its high resilience to noise, several communication parameters to choose from and a freely modifiable communication stack and servers making it ideal for research and deployment. However, LoRaWAN suffers from low reliability due to its ALOHA channel access method. The thesis posits that "Distributed algorithms would increase the protocol's reliability allowing it to meet the requirements of WA-CPSs". Three different application scenarios are explored in this thesis that leverage unexplored aspects of LoRa to meet their requirements. The application scenarios are delay-tolerant vehicular networks, multi-stakeholder WA-CPS deployments and water distribution networks. The systems use novel algorithms to facilitate communication between the nodes and gateways to ensure a highly reliable system. The results outperform state-of-art techniques to prove that LoRa is currently under-utilised and can be used for CPS applications.Open Acces
    • …
    corecore