955 research outputs found

    Distributed Fault-Tolerant Algorithm for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are a set of tiny autonomous and interconnected devices. These nodes are scattered in a region of interest to collect information about the surrounding environment depending on the intended application. In many applications, the network is deployed in harsh environments such as battlefield where the nodes are susceptible to damage. In addition, nodes may fail due to energy depletion and breakdown in the onboard electronics. The failure of nodes may leave some areas uncovered and degrade the fidelity of the collected data. Therefore, establish a fault-tolerant mechanism is very crucial. Given the resource-constrained setup, this mechanism should impose the least overhead and performance impact. This paper focuses on recovery process after a fault detection phase in WSNs. We present an algorithm to recover faulty node called Distributed Fault-Tolerant Algorithm (DFTA).The performance evaluation is tested through simulation to evaluate some factors such as: Packet delivery ratio, control overhead, memory overhead and fault recovery delay. We compared our results with referenced algorithm: Fault Detection in Wireless Sensor Networks (FDWSN), and found that our DFTA performance outperforms that of FDWSN

    An ANFIS estimator based data aggregation scheme for fault tolerant Wireless Sensor Networks

    Get PDF
    AbstractWireless Sensor Networks (WSNs) are used widely in many mission critical applications like battlefield surveillance, environmental monitoring, forest fire monitoring etc. A lot of research is being done to reduce the energy consumption, enhance the network lifetime and fault tolerance capability of WSNs. This paper proposes an ANFIS estimator based data aggregation scheme called Neuro-Fuzzy Optimization Model (NFOM) for the design of fault-tolerant WSNs. The proposed scheme employs an Adaptive Neuro-Fuzzy Inference System (ANFIS) estimator for intra-cluster and inter-cluster fault detection in WSNs. The Cluster Head (CH) acts as the intra-cluster fault detection and data aggregation manager. It identifies the faulty Non-Cluster Head (NCH) nodes in a cluster by the application of the proposed ANFIS estimator. The CH then aggregates data from only the normal NCHs in that cluster and forwards it to the high-energy gateway nodes. The gateway nodes act as the inter-cluster fault detection and data aggregation manager. They pro-actively identify the faulty CHs by the application of the proposed ANFIS estimator and perform inter-cluster fault tolerant data aggregation. The simulation results confirm that the proposed NFOM data aggregation scheme can significantly improve the network performance as compared to other existing schemes with respect to different performance metrics

    Energy-aware distributed routing algorithm to tolerate network failure in wireless sensor networks

    Get PDF
    Wireless Sensor Networks are prone to link/node failures due to various environmental hazards such as interference and internal faults in deployed sensor nodes. Such failures can result in a disconnection in part of the network and the sensed data being unable to obtain a route to the sink(s), i.e. a network failure. Network failures potentially degrade the Quality of Service (QoS) of Wireless Sensor Networks (WSNs). It is very difficult to monitor network failures using a manual operator in a harsh or hostile environment. In such environments, communication links can easy fail because of node unequal energy depletion and hardware failure or invasion. Thus it is desirable that deployed sensor nodes are capable of overcoming network failures. In this paper, we consider the problem of tolerating network failures seen by deployed sensor nodes in a WSN. We first propose a novel clustering algorithm for WSNs, termed Distributed Energy Efficient Heterogeneous Clustering (DEEHC) that selects cluster heads according to the residual energy of deployed sensor nodes with the aid of a secondary timer. During the clustering phase, each sensor node finds k-vertex disjoint paths to cluster heads depending on the energy level of its neighbor sensor nodes. We then present a k-Vertex Disjoint Path Routing (kVDPR) algorithm where each cluster head finds k-vertex disjoint paths to the base station and relays their aggregate data to the base station. Furthermore, we also propose a novel Route Maintenance Mechanism (RMM) that can repair k-vertex disjoint paths throughout the monitoring session. The resulting WSNs become tolerant to k-1 failures in the worst case. The proposed scheme has been extensively tested using various network scenarios and compared to the existing state of the art approaches to show the effectiveness of the proposed scheme

    Fast restoration of Connectivity for Wireless Sensor Networks

    Get PDF
    International audienceNode failures represent a fundamental problem in wireless sensor networks. Such failures may result in partitioned networks and lose of sensed information. A network recovery approach is thus necessary in order to ensure continuous network operations. In this paper, we propose CoMN2 a scalable and distributed approach for network recovery from node failures in wireless sensor networks. CoMN2 relies on a new concept called network mapping which consists in partitioning the network into several regions of increasing criticality. The criticality is set according to the energy, the traffic distribution and the deployment of nodes. Using this network mapping, our solution CoMN2 ensures the continuous network activity by efficiently swapping nodes from low critical area to highly critical area when required. Simulation results prove the effectiveness of our approach and show that the obtained improve-ment in terms of lifetime is in the order of 40%

    Multi-objective hierarchical algorithms for restoring Wireless Sensor Network connectivity in known environments

    Get PDF
    A Wireless Sensor Network can become partitioned due to node failure, requiring the deployment of additional relay nodes in order to restore network connectivity. This introduces an optimisation problem involving a tradeoff between the number of additional nodes that are required and the costs of moving through the sensor field for the purpose of node placement. This tradeoff is application-dependent, influenced for example by the relative urgency of network restoration. We propose a family of algorithms based on hierarchical objectives including complete algorithms and heuristics which integrate network design with path planning, recognising the impact of obstacles on mobility and communication. We conduct an empirical evaluation of the algorithms on random connectivity and mobility graphs, showing their relative performance in terms of node and path costs, and assessing their execution speeds. Finally, we examine how the relative importance of the two objectives influences the choice of algorithm. In summary, the algorithms which prioritise the node cost tend to find graphs with fewer nodes, while the algorithm which prioritise the cost of moving find slightly larger solutions but with cheaper mobility costs. The heuristic algorithms are close to the optimal algorithms in node cost, and higher in mobility costs. For fast moving agents, the node algorithms are preferred for total restoration time, and for slow agents, the path algorithms are preferred

    Wireless Sensor Networks for Building Robotic Paths - A Survey of Problems and Restrictions

    Get PDF
    The conjugation of small nodes with sensing, communication and processing capabilities allows for the creation of wireless sensor networks (WSNs). These networks can be deployed to measure a very wide range of environmental phenomena and send data from remote locations back to users. They offer new and exciting possibilities for applications and research. This paper presents the background of WSNs by firstly exploring the different fields applications, with examples for each of these fields, then the challenges faced by these networks in areas such as energy-efficiency, node localization, node deployment, limited storage and routing. It aims at explaining each issue and giving solutions that have been proposed in the research literature. Finally, the paper proposes a practical scenario of deploying a WSN by autonomous robot path construction. The requirements for such a scenario and the open issues that can be tackled by it are exposed, namely the issues of associated with measuring RSSI, the degree of autonomy of the robot and connectivity restoration.The authors would like to acknowledge the company Inspiring Sci, Lda for the interest and valuable contribution to the successful development of this work.info:eu-repo/semantics/publishedVersio

    An adaptive, energy-aware and distributed fault-tolerant topology-control algorithm for heterogeneous wireless sensor networks

    Get PDF
    This paper introduces an adaptive, energy-aware and distributed fault-tolerant topology-control algorithm, namely the Adaptive Disjoint Path Vector (ADPV) algorithm, for heterogeneous wireless sensor networks. In this heterogeneous model, we have resource-rich supernodes as well as ordinary sensor nodes that are supposed to be connected to the supernodes. Unlike the static alternative Disjoint Path Vector (DPV) algorithm, the focus of ADPV is to secure supernode connectivity in the presence of node failures, and ADPV achieves this goal by dynamically adjusting the sensor nodes' transmission powers. The ADPV algorithm involves two phases: a single initialization phase, which occurs at the beginning, and restoration phases, which are invoked each time the network's supernode connectivity is broken. Restoration phases utilize alternative routes that are computed at the initialization phase by the help of a novel optimization based on the well-known set-packing problem. Through extensive simulations, we demonstrate that ADPV is superior in preserving supernode connectivity. In particular, ADPV achieves this goal up to a failure of 95% of the sensor nodes; while the performance of DPV is limited to 5%. In turn, by our adaptive algorithm, we obtain a two-fold increase in supernode-connected lifetimes compared to DPV algorithm. © 2016 Elsevier B.V. All rights reserved

    A survey on fault diagnosis in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) often consist of hundreds of sensor nodes that may be deployed in relatively harsh and complex environments. In views of hardware cost, sensor nodes always adopt relatively cheap chips, which makes these nodes become error-prone or faulty in the course of their operation. Natural factors and electromagnetic interference could also influence the performance of the WSNs. When sensor nodes become faulty, they may have died which means they cannot communicate with other members in the wireless network, they may be still alive but produce incorrect data, they may be unstable jumping between normal state and faulty state. To improve data quality, shorten response time, strengthen network security, and prolong network lifespan, many studies have focused on fault diagnosis. This survey paper classifies fault diagnosis methods in recent five years into three categories based on decision centers and key attributes of employed algorithms: centralized approaches, distributed approaches, and hybrid approaches. As all these studies have specific goals and limitations, this paper tries to compare them, lists their merits and limits, and propose potential research directions based on established methods and theories
    corecore