7,808 research outputs found

    Postselection threshold against biased noise

    Get PDF
    The highest current estimates for the amount of noise a quantum computer can tolerate are based on fault-tolerance schemes relying heavily on postselecting on no detected errors. However, there has been no proof that these schemes give even a positive tolerable noise threshold. A technique to prove a positive threshold, for probabilistic noise models, is presented. The main idea is to maintain strong control over the distribution of errors in the quantum state at all times. This distribution has correlations which conceivably could grow out of control with postselection. But in fact, the error distribution can be written as a mixture of nearby distributions each satisfying strong independence properties, so there are no correlations for postselection to amplify.Comment: 13 pages, FOCS 2006; conference versio

    Aspects of Fault-Tolerant Quantum Computation

    Get PDF
    This thesis is concerned with fault-tolerant quantum information processing using quantum error-correcting codes. It contains two major pieces of work. The first is a study of coherent noise in the context of stabilizer error-correcting codes. The second is a proposed scheme for a universal set of fault-tolerant logical gates in a particular code family built out of the 3D toric code. Chapter 1 provides an introduction to quantum computation and fault tolerance. Many basic concepts in error-correcting codes are defined. Special attention is paid to the set of code properties that are most likely to determine how easily a given fault-tolerant scheme might be implemented on a physical device. These include the fault-tolerant noise threshold and the overhead. In Chapters 2 and 3 we study the effectiveness of quantum error correction against coherent noise. Coherent errors (for example, unitary noise) can interfere constructively, so that in some cases the average infidelity of a quantum circuit subjected to coherent errors may increase quadratically with the circuit size; in contrast, when errors are incoherent (for example, depolarizing noise), the average infidelity increases at worst linearly with circuit size. We consider the performance of quantum stabilizer codes against a noise model in which a unitary rotation is applied to each qubit, where the axes and angles of rotation are nearly the same for all qubits. In Chapter 2 we introduce coherent noise and incoherent noise and a number of methods that are useful for the study of coherent noise. We study the repetition code as a basic example, and we also study a correlated noise model. In Chapter 3 we show that for the toric code subject to such independent coherent noise, and for minimal-weight decoding, the logical channel after error correction becomes increasingly incoherent as the length of the code increases, provided the noise strength decays inversely with the code distance. A similar conclusion holds for weakly correlated coherent noise. Our methods can also be used for analyzing the performance of other codes and fault-tolerant protocols against coherent noise. However, our result does not show that the coherence of the logical channel is suppressed in the more physically relevant case where the noise strength is held constant as the code block grows, and we recount the difficulties that prevented us from extending the result to that case. Nevertheless our work supports the idea that fault-tolerant quantum computing schemes will work effectively against coherent noise, providing encouraging news for quantum hardware builders who worry about the damaging effects of control errors and coherent interactions with the environment. Chapter 4 is connected to another aspect of fault tolerance, fault-tolerant logical gates. The toric code is a promising candidate for fault-tolerant quantum computation because of its high threshold and low-weight stabilizers. A universal gate set in the toric code generally requires magic state distillation, which can incur a significant qubit overhead. In this work we construct an error-correcting code in three dimensions based on the toric code that features a fault-tolerant T gate with no magic state distillation required. We further describe a subsystem version of our code which supports a universal set of fault-tolerant gates. This code can be converted into the stabilizer version using gauge-fixing. We also argue that our code can be converted to a (2+1)-D protocol, where a 2D lattice undergoes a measurement-based protocol over time. In this way, a fault-tolerant logical T gate can be realized in a 2D toric code structure.</p

    Fault-tolerant logical gates in quantum error-correcting codes

    Get PDF
    Recently, Bravyi and K\"onig have shown that there is a tradeoff between fault-tolerantly implementable logical gates and geometric locality of stabilizer codes. They consider locality-preserving operations which are implemented by a constant depth geometrically local circuit and are thus fault-tolerant by construction. In particular, they shown that, for local stabilizer codes in D spatial dimensions, locality preserving gates are restricted to a set of unitary gates known as the D-th level of the Clifford hierarchy. In this paper, we elaborate this idea and provide several extensions and applications of their characterization in various directions. First, we present a new no-go theorem for self-correcting quantum memory. Namely, we prove that a three-dimensional stabilizer Hamiltonian with a locality-preserving implementation of a non-Clifford gate cannot have a macroscopic energy barrier. Second, we prove that the code distance of a D-dimensional local stabilizer code with non-trivial locality-preserving m-th level Clifford logical gate is upper bounded by O(LD+1−m)O(L^{D+1-m}). For codes with non-Clifford gates (m>2), this improves the previous best bound by Bravyi and Terhal. Third we prove that a qubit loss threshold of codes with non-trivial transversal m-th level Clifford logical gate is upper bounded by 1/m. As such, no family of fault-tolerant codes with transversal gates in increasing level of the Clifford hierarchy may exist. This result applies to arbitrary stabilizer and subsystem codes, and is not restricted to geometrically-local codes. Fourth we extend the result of Bravyi and K\"onig to subsystem codes. A technical difficulty is that, unlike stabilizer codes, the so-called union lemma does not apply to subsystem codes. This problem is avoided by assuming the presence of error threshold in a subsystem code, and the same conclusion as Bravyi-K\"onig is recovered.Comment: 13 pages, 4 figure

    Local Fault-tolerant Quantum Computation

    Full text link
    We analyze and study the effects of locality on the fault-tolerance threshold for quantum computation. We analytically estimate how the threshold will depend on a scale parameter r which estimates the scale-up in the size of the circuit due to encoding. We carry out a detailed semi-numerical threshold analysis for concatenated coding using the 7-qubit CSS code in the local and `nonlocal' setting. First, we find that the threshold in the local model for the [[7,1,3]] code has a 1/r dependence, which is in correspondence with our analytical estimate. Second, the threshold, beyond the 1/r dependence, does not depend too strongly on the noise levels for transporting qubits. Beyond these results, we find that it is important to look at more than one level of concatenation in order to estimate the threshold and that it may be beneficial in certain places, like in the transportation of qubits, to do error correction only infrequently.Comment: REVTeX, 44 pages, 19 figures, to appear in Physical Review

    Flag fault-tolerant error correction with arbitrary distance codes

    Full text link
    In this paper we introduce a general fault-tolerant quantum error correction protocol using flag circuits for measuring stabilizers of arbitrary distance codes. In addition to extending flag error correction beyond distance-three codes for the first time, our protocol also applies to a broader class of distance-three codes than was previously known. Flag circuits use extra ancilla qubits to signal when errors resulting from vv faults in the circuit have weight greater than vv. The flag error correction protocol is applicable to stabilizer codes of arbitrary distance which satisfy a set of conditions and uses fewer qubits than other schemes such as Shor, Steane and Knill error correction. We give examples of infinite code families which satisfy these conditions and analyze the behaviour of distance-three and -five examples numerically. Requiring fewer resources than Shor error correction, flag error correction could potentially be used in low-overhead fault-tolerant error correction protocols using low density parity check quantum codes of large code length.Comment: 29 pages (18 pages main text), 22 figures, 7 tables. Comments welcome! V3 represents the version accepted to quantu

    The Small Stellated Dodecahedron Code and Friends

    Get PDF
    We explore a distance-3 homological CSS quantum code, namely the small stellated dodecahedron code, for dense storage of quantum information and we compare its performance with the distance-3 surface code. The data and ancilla qubits of the small stellated dodecahedron code can be located on the edges resp. vertices of a small stellated dodecahedron, making this code suitable for 3D connectivity. This code encodes 8 logical qubits into 30 physical qubits (plus 22 ancilla qubits for parity check measurements) as compared to 1 logical qubit into 9 physical qubits (plus 8 ancilla qubits) for the surface code. We develop fault-tolerant parity check circuits and a decoder for this code, allowing us to numerically assess the circuit-based pseudo-threshold.Comment: 19 pages, 14 figures, comments welcome! v2 includes updates which conforms with the journal versio

    Bounding quantum gate error rate based on reported average fidelity

    Full text link
    Remarkable experimental advances in quantum computing are exemplified by recent announcements of impressive average gate fidelities exceeding 99.9% for single-qubit gates and 99% for two-qubit gates. Although these high numbers engender optimism that fault-tolerant quantum computing is within reach, the connection of average gate fidelity with fault-tolerance requirements is not direct. Here we use reported average gate fidelity to determine an upper bound on the quantum-gate error rate, which is the appropriate metric for assessing progress towards fault-tolerant quantum computation, and we demonstrate that this bound is asymptotically tight for general noise. Although this bound is unlikely to be saturated by experimental noise, we demonstrate using explicit examples that the bound indicates a realistic deviation between the true error rate and the reported average fidelity. We introduce the Pauli distance as a measure of this deviation, and we show that knowledge of the Pauli distance enables tighter estimates of the error rate of quantum gates.Comment: New Journal of Physics Fast Track Communication. Gold open access journa

    Universal fault-tolerant gates on concatenated stabilizer codes

    Get PDF
    It is an oft-cited fact that no quantum code can support a set of fault-tolerant logical gates that is both universal and transversal. This no-go theorem is generally responsible for the interest in alternative universality constructions including magic state distillation. Widely overlooked, however, is the possibility of non-transversal, yet still fault-tolerant, gates that work directly on small quantum codes. Here we demonstrate precisely the existence of such gates. In particular, we show how the limits of non-transversality can be overcome by performing rounds of intermediate error-correction to create logical gates on stabilizer codes that use no ancillas other than those required for syndrome measurement. Moreover, the logical gates we construct, the most prominent examples being Toffoli and controlled-controlled-Z, often complete universal gate sets on their codes. We detail such universal constructions for the smallest quantum codes, the 5-qubit and 7-qubit codes, and then proceed to generalize the approach. One remarkable result of this generalization is that any nondegenerate stabilizer code with a complete set of fault-tolerant single-qubit Clifford gates has a universal set of fault-tolerant gates. Another is the interaction of logical qubits across different stabilizer codes, which, for instance, implies a broadly applicable method of code switching.Comment: 18 pages + 5 pages appendix, 12 figure
    • …
    corecore