708 research outputs found

    Data Driven Device Failure Prediction

    Get PDF
    As society becomes more dependent upon computer systems to perform increasingly critical tasks, ensuring those systems do not fail also becomes more important. Many organizations depend heavily on desktop computers for day to day operations. Unfortunately, the software that runs on these computers is still written by humans and as such, is still subject to human error and consequent failure. A natural solution is to use statistical machine learning to predict failure. However, since failure is still a relatively rare event, obtaining labeled training data to train these models is not trivial. This work presents new simulated fault loads with an automated framework to predict failure in the Microsoft enterprise authentication service and Apache web server in an effort to increase up-time and improve mission effectiveness. These new fault loads were successful in creating realistic failure conditions that are accurately identified by statistical learning models

    Software systems through complex networks science: Review, analysis and applications

    Full text link
    Complex software systems are among most sophisticated human-made systems, yet only little is known about the actual structure of 'good' software. We here study different software systems developed in Java from the perspective of network science. The study reveals that network theory can provide a prominent set of techniques for the exploratory analysis of large complex software system. We further identify several applications in software engineering, and propose different network-based quality indicators that address software design, efficiency, reusability, vulnerability, controllability and other. We also highlight various interesting findings, e.g., software systems are highly vulnerable to processes like bug propagation, however, they are not easily controllable

    Are Multi-language Design Smells Fault-prone? An Empirical Study

    Full text link
    Nowadays, modern applications are developed using components written in different programming languages. These systems introduce several advantages. However, as the number of languages increases, so does the challenges related to the development and maintenance of these systems. In such situations, developers may introduce design smells (i.e., anti-patterns and code smells) which are symptoms of poor design and implementation choices. Design smells are defined as poor design and coding choices that can negatively impact the quality of a software program despite satisfying functional requirements. Studies on mono-language systems suggest that the presence of design smells affects code comprehension, thus making systems harder to maintain. However, these studies target only mono-language systems and do not consider the interaction between different programming languages. In this paper, we present an approach to detect multi-language design smells in the context of JNI systems. We then investigate the prevalence of those design smells. Specifically, we detect 15 design smells in 98 releases of nine open-source JNI projects. Our results show that the design smells are prevalent in the selected projects and persist throughout the releases of the systems. We observe that in the analyzed systems, 33.95% of the files involving communications between Java and C/C++ contains occurrences of multi-language design smells. Some kinds of smells are more prevalent than others, e.g., Unused Parameters, Too Much Scattering, Unused Method Declaration. Our results suggest that files with multi-language design smells can often be more associated with bugs than files without these smells, and that specific smells are more correlated to fault-proneness than others

    Automatic System Testing of Programs without Test Oracles

    Get PDF
    Metamorphic testing has been shown to be a simple yet effective technique in addressing the quality assurance of applications that do not have test oracles, i.e., for which it is difficult or impossible to know what the correct output should be for arbitrary input. In metamorphic testing, existing test case input is modified to produce new test cases in such a manner that, when given the new input, the application should produce an output that can be easily be computed based on the original output. That is, if input x produces output f (x), then we create input x' such that we can predict f (x') based on f(x); if the application does not produce the expected output, then a defect must exist, and either f (x) or f (x') (or both) is wrong. In practice, however, metamorphic testing can be a manually intensive technique for all but the simplest cases. The transformation of input data can be laborious for large data sets, or practically impossible for input that is not in human-readable format. Similarly, comparing the outputs can be error-prone for large result sets, especially when slight variations in the results are not actually indicative of errors (i.e., are false positives), for instance when there is non-determinism in the application and multiple outputs can be considered correct. In this paper, we present an approach called Automated Metamorphic System Testing. This involves the automation of metamorphic testing at the system level by checking that the metamorphic properties of the entire application hold after its execution. The tester is able to easily set up and conduct metamorphic tests with little manual intervention, and testing can continue in the field with minimal impact on the user. Additionally, we present an approach called Heuristic Metamorphic Testing which seeks to reduce false positives and address some cases of non-determinism. We also describe an implementation framework called Amsterdam, and present the results of empirical studies in which we demonstrate the effectiveness of the technique on real-world programs without test oracles

    Is One Hyperparameter Optimizer Enough?

    Full text link
    Hyperparameter tuning is the black art of automatically finding a good combination of control parameters for a data miner. While widely applied in empirical Software Engineering, there has not been much discussion on which hyperparameter tuner is best for software analytics. To address this gap in the literature, this paper applied a range of hyperparameter optimizers (grid search, random search, differential evolution, and Bayesian optimization) to defect prediction problem. Surprisingly, no hyperparameter optimizer was observed to be `best' and, for one of the two evaluation measures studied here (F-measure), hyperparameter optimization, in 50\% cases, was no better than using default configurations. We conclude that hyperparameter optimization is more nuanced than previously believed. While such optimization can certainly lead to large improvements in the performance of classifiers used in software analytics, it remains to be seen which specific optimizers should be applied to a new dataset.Comment: 7 pages, 2 columns, accepted for SWAN1

    On the detection of virtual machine introspection from inside a guest virtual machine

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2015With the increased prevalence of virtualization in the modern computing environment, the security of that technology becomes of paramount importance. Virtual Machine Introspection (VMI) is one of the technologies that has emerged to provide security for virtual environments by examining and then interpreting the state of an active Virtual Machine (VM). VMI has seen use in systems administration, digital forensics, intrusion detection, and honeypots. As with any technology, VMI has both productive uses as well as harmful uses. The research presented in this dissertation aims to enable a guest VM to determine if it is under examination by an external VMI agent. To determine if a VM is under examination a series of statistical analyses are performed on timing data generated by the guest itself

    Automatically Identifying Code Features for Software Defect Prediction: Using AST N-grams

    Get PDF
    Context: Identifying defects in code early is important. A wide range of static code metrics have been evaluated as potential defect indicators. Most of these metrics offer only high level insights and focus on particular pre-selected features of the code. None of the currently used metrics clearly performs best in defect prediction. Objective: We use Abstract Syntax Tree (AST) n-grams to identify features of defective Java code that improve defect prediction performance. Method: Our approach is bottom-up and does not rely on pre-selecting any specific features of code. We use non-parametric testing to determine relationships between AST n-grams and faults in both open source and commercial systems. We build defect prediction models using three machine learning techniques. Results: We show that AST n-grams are very significantly related to faults in some systems, with very large effect sizes. The occurrence of some frequently occurring AST n-grams in a method can mean that the method is up to three times more likely to contain a fault. AST n-grams can have a large effect on the performance of defect prediction models. Conclusions: We suggest that AST n-grams offer developers a promising approach to identifying potentially defective code
    • …
    corecore