259 research outputs found

    An Information Model for Geographic Greedy Forwarding in Wireless Ad-Hoc Sensor Networks

    Get PDF
    In wireless ad-hoc sensor networks, an important issue often faced in geographic greedy forwarding routing is the "local minimum phenomenon" which is caused by deployment holes and blocks the forwarding process. In this paper, we provide a new information model for the geographic greedy forwarding routing that only forwards the packet within the so-called request zone. Under this new information model, the hole and its affected area are identified easily and quickly in an unsafe area with a labeling process. The greedy forwarding will be blocked if and only if a node inside the unsafe area is used. Due to the shape of the request zone, an unsafe area can be estimated as a rectangular region in the local view of unsafe nodes. With such estimate information, the new routing method proposed in this paper will avoid blocking by holes and achieve better performance in routing time while the cost of information construction is greatly reduced compared with the best results known to date.Department of ComputingRefereed conference pape

    Tracking the path of a mobile radioactive source using a wireless sensor network

    Get PDF
    This report describes several experiments used to characterize and test a network of radiation sensors. The purpose of these tests is to assess the feasibility of using these sensors to detect and track radioactive sources in a large field, as in a battlefield or on a military campus. Simulated radiation measurements are used to compare the result of radiation detection accuracy in tracking the moving target and to find its path as early as possible. This is done via changing the number of sensing nodes deployed (deployment density), as well as the models of the detectors. This thesis describes algorithms for both detecting the presence and tracking the position of radioactive sources. It formulates the detection problem as a nonparametric hypothesis-testing problem that is solved by comparing a statistic computed over some window of observation of the data to a threshold value. If this threshold is exceeded then it is decided that a source is present. The tracking results thus found are compared with the actual chosen path within the implemented experiment. Detection delay has been measured while trading off battery consumption and accuracy

    GPSR-TARS: congestion aware geographically targeted remote surveillance for VANETs

    Get PDF
    Video over vehicular networks continues to receive warranted attention, with envisioned applications having the potential to present entirely new opportunities and revolutionise existing services. Many video systems have been proposed, ranging from safety to advertising. We propose a novel system for VANETs, namely the TArgeted Remote Surveillance (TARS) module for the existing Greedy Perimeter Stateless Routing (GPSR) protocol which permits multiple mobile vehicles to request and receive live video feeds from vehicles within a select geographic region. The multi-hop, vehicle-to-vehicle system enables mobile units to surveil a target area in real time by leveraging the dashboard cameras of vehicles moving within the target region. We combine several proposed extensions to the core protocol to introduce a dynamic real time congestion aware clustering scheme to achieve this. Our proposed system is compared against existing routing protocols using mobility data from Nottingham. GPSR-TARS outperforms the protocols assessed in key criteria crucial for meeting the quality of service demands of live multimedia dissemination

    Robust geometric forest routing with tunable load balancing

    Get PDF
    Although geometric routing is proposed as a memory-efficient alternative to traditional lookup-based routing and forwarding algorithms, it still lacks: i) adequate mechanisms to trade stretch against load balancing, and ii) robustness to cope with network topology change. The main contribution of this paper involves the proposal of a family of routing schemes, called Forest Routing. These are based on the principles of geometric routing, adding flexibility in its load balancing characteristics. This is achieved by using an aggregation of greedy embeddings along with a configurable distance function. Incorporating link load information in the forwarding layer enables load balancing behavior while still attaining low path stretch. In addition, the proposed schemes are validated regarding their resilience towards network failures

    Worst-Case Routing Performance Evaluation of Sensor Networks

    Get PDF
    Successful sensor network applications depends heavily on the ability of these networks to reliably and reasonably perform under the worst-case scenarios, extreme and unusual events for which many such networks are designed to detect. One of the key performance measures is the network's ability to route measurement data from the sensor nodes to the destination node(s). This paper introduces a general framework with which worst-case routing performance of different sensor networks can be evaluated and compared. Our method can either be used as a design optimization tool, or a decision making tool to select and price contending sensor network designs and applications

    Surveying Position Based Routing Protocols for Wireless Sensor and Ad-hoc Networks

    Get PDF
    A focus of the scientific community is to design network oriented position-based routing protocols and this has resulted in a very high number of algorithms, different in approach and performance and each suited only to particular applications. However, though numerous, very few position-based algorithms have actually been adopted for commercial purposes. This article is a survey of almost 50 position-based routing protocols and it comes as an aid in the implementation of this type of routing in various applications which may need to consider the advantages and pitfalls of position-based routing. An emphasis is made on geographic routing, whose notion is clarified as a more restrictive and more efficient type of position-based routing. The protocols are therefore divided into geographic and non-geographic routing protocols and each is characterized according to a number of network design issues and presented in a comparative manner from multiple points of view. The main requirements of current general applications are also studied and, depending on these, the survey proposes a number of protocols for use in particular application areas. This aims to help both researchers and potential users assess and choose the protocol best suited to their interest

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications

    SSEGR: Secure single-copy energy efficient geographical routing algorithm in wireless sensor networks

    Get PDF
    Geographical Routing Technique is a new trend in Wireless Sensor Networks in which the sensor nodes are enabled using Global Positioning Systems (GPS). This helps to easily detect the position of their neighboring nodes. The power consumption is more in the existing routing algorithms, since the nodes build the routing tables and the neighboring node IDs are determined by searching the routing table. In this paper, we have proposed Secure Single-Copy Energy Efficient Geographical Routing (SSEGR) algorithm in which the data traffic and energy consumption is minimized using single copy data transfer. In SSEGR, initially one copy is transmitted to the next node using greedy approach and another copy is preserved in the sending station. If acknowledgment is not received even after timeout then the second copy is transmitted. This dynamic single copy scheme reduces the data traffic in Wireless Sensor Networks. Security algorithms are incorporated in every sensor node to prevent any malicious node attack that disturb the normal functioning of the network. Simulation result shows that the performance of the proposed algorithm is better interms of packet delivery probability and energy consumption in comparision with existing algorithm
    corecore