250 research outputs found

    Image Segmentation Using Marker-Controlled Watershed Transformation and Morphology

    Get PDF
    The watershed segmentation methods are essential methods, to be considered for quick results in image handling and analysis. However, the main problem arises in produced image because it causes excess segmentation and noise. This research is conducted to improve this presented algorithm based on the mathematical morphology and filters to minimize flaws mentioned in that paper. Objective of this research is to find the gaps in the existing literary works. In most cases, themarker based segmentation is best because it marks the part of segment. The working of this proposed algorithm is checked by optimization of the part that is still an area of research

    Operating System Support for Redundant Multithreading

    Get PDF
    Failing hardware is a fact and trends in microprocessor design indicate that the fraction of hardware suffering from permanent and transient faults will continue to increase in future chip generations. Researchers proposed various solutions to this issue with different downsides: Specialized hardware components make hardware more expensive in production and consume additional energy at runtime. Fault-tolerant algorithms and libraries enforce specific programming models on the developer. Compiler-based fault tolerance requires the source code for all applications to be available for recompilation. In this thesis I present ASTEROID, an operating system architecture that integrates applications with different reliability needs. ASTEROID is built on top of the L4/Fiasco.OC microkernel and extends the system with Romain, an operating system service that transparently replicates user applications. Romain supports single- and multi-threaded applications without requiring access to the application's source code. Romain replicates applications and their resources completely and thereby does not rely on hardware extensions, such as ECC-protected memory. In my thesis I describe how to efficiently implement replication as a form of redundant multithreading in software. I develop mechanisms to manage replica resources and to make multi-threaded programs behave deterministically for replication. I furthermore present an approach to handle applications that use shared-memory channels with other programs. My evaluation shows that Romain provides 100% error detection and more than 99.6% error correction for single-bit flips in memory and general-purpose registers. At the same time, Romain's execution time overhead is below 14% for single-threaded applications running in triple-modular redundant mode. The last part of my thesis acknowledges that software-implemented fault tolerance methods often rely on the correct functioning of a certain set of hardware and software components, the Reliable Computing Base (RCB). I introduce the concept of the RCB and discuss what constitutes the RCB of the ASTEROID system and other fault tolerance mechanisms. Thereafter I show three case studies that evaluate approaches to protecting RCB components and thereby aim to achieve a software stack that is fully protected against hardware errors

    Multi-core devices for safety-critical systems: a survey

    Get PDF
    Multi-core devices are envisioned to support the development of next-generation safety-critical systems, enabling the on-chip integration of functions of different criticality. This integration provides multiple system-level potential benefits such as cost, size, power, and weight reduction. However, safety certification becomes a challenge and several fundamental safety technical requirements must be addressed, such as temporal and spatial independence, reliability, and diagnostic coverage. This survey provides a categorization and overview at different device abstraction levels (nanoscale, component, and device) of selected key research contributions that support the compliance with these fundamental safety requirements.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under grant TIN2015-65316-P, Basque Government under grant KK-2019-00035 and the HiPEAC Network of Excellence. The Spanish Ministry of Economy and Competitiveness has also partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717).Peer ReviewedPostprint (author's final draft

    A tool for detecting transient faults in execution of parallel scientific applications on multicore clusters

    Get PDF
    Transient faults are becoming a critical concern among current trends of design of general-purpose multiprocessors. Because of their capability to corrupt programs outputs, their impact gains importance when considering long duration, parallel scientific applications, due to the high cost of relaunching execution from the beginning in case of incorrect results. This paper introduces SMCV tool which improves reliability for high-performance systems. SMCV replicates application processes and validates the contents of the messages to be sent, preventing the propagation of errors to other processes and restricting detection latency and notification. To assess its utility, the overhead of SMCV tool is evaluated with three computationally-intensive, representative parallel scientific applications. The obtained results demonstrate the efficiency of SMCV tool to detect transient faults occurrences.WPDP- XIII Workshop procesamiento distribuido y paraleloRed de Universidades con Carreras en Informática (RedUNCI

    Optimistic Parallel State-Machine Replication

    Full text link
    State-machine replication, a fundamental approach to fault tolerance, requires replicas to execute commands deterministically, which usually results in sequential execution of commands. Sequential execution limits performance and underuses servers, which are increasingly parallel (i.e., multicore). To narrow the gap between state-machine replication requirements and the characteristics of modern servers, researchers have recently come up with alternative execution models. This paper surveys existing approaches to parallel state-machine replication and proposes a novel optimistic protocol that inherits the scalable features of previous techniques. Using a replicated B+-tree service, we demonstrate in the paper that our protocol outperforms the most efficient techniques by a factor of 2.4 times

    Parallel error detection using heterogeneous cores

    Get PDF
    Microprocessor error detection is increasingly important, as the number of transistors in modern systems heightens their vulnerability. In addition, many modern workloads in domains such as the automotive and health industries are increasingly error intolerant, due to strict safety standards. However, current detection techniques require duplication of all hardware structures, causing a considerable increase in power consumption and chip area. Solutions in the literature involve running the code multiple times on the same hardware, which reduces performance significantly and cannot capture all errors. We have designed a novel hardware-only solution for error detection, that exploits parallelism in checking code which may not exist in the original execution. We pair a high-performance out-of-order core with a set of small low-power cores, each of which checks a portion of the out-of-order core's execution. Our system enables the detection of both hard and soft errors, with low area, power and performance overheads.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC), through grant references EP/K026399/1 and EP/M506485/1, and Arm Ltd
    • …
    corecore