6,630 research outputs found

    Fault Testing for Reversible Circuits

    Full text link
    Applications of reversible circuits can be found in the fields of low-power computation, cryptography, communications, digital signal processing, and the emerging field of quantum computation. Furthermore, prototype circuits for low-power applications are already being fabricated in CMOS. Regardless of the eventual technology adopted, testing is sure to be an important component in any robust implementation. We consider the test set generation problem. Reversibility affects the testing problem in fundamental ways, making it significantly simpler than for the irreversible case. For example, we show that any test set that detects all single stuck-at faults in a reversible circuit also detects all multiple stuck-at faults. We present efficient test set constructions for the standard stuck-at fault model as well as the usually intractable cell-fault model. We also give a practical test set generation algorithm, based on an integer linear programming formulation, that yields test sets approximately half the size of those produced by conventional ATPG.Comment: 30 pages, 8 figures. to appear in IEEE Trans. on CA

    Testable Design for Positive Control Flipping Faults in Reversible Circuits

    Get PDF
    Fast computational power is a major concern in every computing system. The advancement of the fabrication process in the present semiconductor technologies provides to accommodate millions of gates per chip and is also capable of reducing the size of the chips. Concurrently, the complex circuit design always leads to high power dissipation and increases the fault rates. Due to these difficulties, researchers explore the reversible logic circuit as an alternative way to implement the low-power circuit design. It is also widely applied in recent technology trends like quantum computing. Analyzing the correct functional behavior of these circuits is an essential requirement in the testing of the circuit. This paper presents a testable design for the k-CNOT based circuit capable of diagnosing the Positive Control Flipping Faults (PCFFs) in reversible circuits. The proposed work shows that generating a single test vector that applies to the constructed design circuit is sufficient for covering the PCFFs in the reversible circuit. Further, the parity-bit operations are augmented to the constructed testable circuit that produces the parity-test pattern to extract the faulty gate location of PCFFs. Various reversible benchmark circuits are used for evaluating the experimental results to establish the correctness of the proposed fault diagnosis technique. Also a comparative analysis is performed with the existing work

    Testing a Quantum Computer

    Get PDF
    The problem of quantum test is formally addressed. The presented method attempts the quantum role of classical test generation and test set reduction methods known from standard binary and analog circuits. QuFault, the authors software package generates test plans for arbitrary quantum circuits using the very efficient simulator QuIDDPro[1]. The quantum fault table is introduced and mathematically formalized, and the test generation method explained.Comment: 15 pages, 17 equations, 27 tables, 8 figure

    Fault Models for Quantum Mechanical Switching Networks

    Full text link
    The difference between faults and errors is that, unlike faults, errors can be corrected using control codes. In classical test and verification one develops a test set separating a correct circuit from a circuit containing any considered fault. Classical faults are modelled at the logical level by fault models that act on classical states. The stuck fault model, thought of as a lead connected to a power rail or to a ground, is most typically considered. A classical test set complete for the stuck fault model propagates both binary basis states, 0 and 1, through all nodes in a network and is known to detect many physical faults. A classical test set complete for the stuck fault model allows all circuit nodes to be completely tested and verifies the function of many gates. It is natural to ask if one may adapt any of the known classical methods to test quantum circuits. Of course, classical fault models do not capture all the logical failures found in quantum circuits. The first obstacle faced when using methods from classical test is developing a set of realistic quantum-logical fault models. Developing fault models to abstract the test problem away from the device level motivated our study. Several results are established. First, we describe typical modes of failure present in the physical design of quantum circuits. From this we develop fault models for quantum binary circuits that enable testing at the logical level. The application of these fault models is shown by adapting the classical test set generation technique known as constructing a fault table to generate quantum test sets. A test set developed using this method is shown to detect each of the considered faults.Comment: (almost) Forgotten rewrite from 200
    • …
    corecore