4 research outputs found

    Testability and redundancy techniques for improved yield and reliability of CMOS VLSI circuits

    Get PDF
    The research presented in this thesis is concerned with the design of fault-tolerant integrated circuits as a contribution to the design of fault-tolerant systems. The economical manufacture of very large area ICs will necessitate the incorporation of fault-tolerance features which are routinely employed in current high density dynamic random access memories. Furthermore, the growing use of ICs in safety-critical applications and/or hostile environments in addition to the prospect of single-chip systems will mandate the use of fault-tolerance for improved reliability. A fault-tolerant IC must be able to detect and correct all possible faults that may affect its operation. The ability of a chip to detect its own faults is not only necessary for fault-tolerance, but it is also regarded as the ultimate solution to the problem of testing. Off-line periodic testing is selected for this research because it achieves better coverage of physical faults and it requires less extra hardware than on-line error detection techniques. Tests for CMOS stuck-open faults are shown to detect all other faults. Simple test sequence generation procedures for the detection of all faults are derived. The test sequences generated by these procedures produce a trivial output, thereby, greatly simplifying the task of test response analysis. A further advantage of the proposed test generation procedures is that they do not require the enumeration of faults. The implementation of built-in self-test is considered and it is shown that the hardware overhead is comparable to that associated with pseudo-random and pseudo-exhaustive techniques while achieving a much higher fault coverage through-the use of the proposed test generation procedures. The consideration of the problem of testing the test circuitry led to the conclusion that complete test coverage may be achieved if separate chips cooperate in testing each other's untested parts. An alternative approach towards complete test coverage would be to design the test circuitry so that it is as distributed as possible and so that it is tested as it performs its function. Fault correction relies on the provision of spare units and a means of reconfiguring the circuit so that the faulty units are discarded. This raises the question of what is the optimum size of a unit? A mathematical model, linking yield and reliability is therefore developed to answer such a question and also to study the effects of such parameters as the amount of redundancy, the size of the additional circuitry required for testing and reconfiguration, and the effect of periodic testing on reliability. The stringent requirement on the size of the reconfiguration logic is illustrated by the application of the model to a typical example. Another important result concerns the effect of periodic testing on reliability. It is shown that periodic off-line testing can achieve approximately the same level of reliability as on-line testing, even when the time between tests is many hundreds of hours

    A Comprehensive Fault Model for Concurrent Error Detection in MOS Circuits

    Get PDF
    Naval Electronics Sys. Comm. and Office of Naval Research / N00039-80-C-0556Ope

    Quality and Quantity in Robustness-Checking Using Formal Techniques

    Get PDF
    Fault tolerance is one of the main challenges for future technology scaling to tolerate transient faults. Various techniques at design level are available to catch and handle transient faults, e.g., Triple Modular Redundancy. An important but missing step is to verify the implementation of those techniques since the implementation might be buggy itself. The thesis is focusing on formally verifying digital circuits with respect to fault-tolerant aspects. It considers transient faults and basically checks whether these faults can influence the output behavior of sequential circuits for any kind of scenarios. As a result the designer is pin-pointed directly to critical parts of the design and gets a prove about the absence of faulty behavior for non-critical parts. The focus of the verification is completeness with respect to the analysis. Three issues need to be adequately addressed: 1) cover all input stimuli, 2) all possible transient faults, and, 3) all possibly exponential long (wrt. to number of state bits) propagation paths. All three issues are addressed in different engines. A tool called RobuCheck has been implemented and evaluated on different academic benchmarks from ITC'99 and industrial benchmarks from IBM

    Fault secureness need for next generation high performance microprocessor design for testability structures

    No full text
    none3noneC. Metra; T. M. Mak; M. Oma帽aC. Metra; T. M. Mak; M. Oma帽
    corecore