1,822 research outputs found

    Europe: Status of Integrating Renewable Electricity Production into the Grid

    Get PDF

    Fault analysis and protection for wind power generation systems

    Get PDF
    Wind power is growing rapidly around the world as a means of dealing with the world energy shortage and associated environmental problems. Ambitious plans concerning renewable energy applications around European countries require a reliable yet economic system to generate, collect and transmit electrical power from renewable resources. In populous Europe, collective offshore large-scale wind farms are efficient and have the potential to reach this sustainable goal. This means that an even more reliable collection and transmission system is sought. However, this relatively new area of offshore wind power generation lacks systematic fault transient analysis and operational experience to enhance further development. At the same time, appropriate fault protection schemes are required. This thesis focuses on the analysis of fault conditions and investigates effective fault ride-through and protection schemes in the electrical systems of wind farms, for both small-scale land and large-scale offshore systems. Two variable-speed generation systems are considered: doubly-fed induction generators (DFIGs) and permanent magnet synchronous generators (PMSGs) because of their popularity nowadays for wind turbines scaling to several-MW systems. The main content of the thesis is as follows. The protection issues of DFIGs are discussed, with a novel protection scheme proposed. Then the analysis of protection scheme options for the fully rated converter, direct-driven PMSGs are examined and performed with simulation comparisons. Further, the protection schemes for wind farm collection and transmission systems are studied in terms of voltage level, collection level wind farm collection grids and high-voltage transmission systems for multi-terminal DC connected transmission systems, the so-called “Supergrid”. Throughout the thesis, theoretical analyses of fault transient performances are detailed with PSCAD/EMTDC simulation results for verification. Finally, the economic aspect for possible redundant design of wind farm electrical systems is investigated based on operational and economic statistics from an example wind farm project

    Offshore Wind Farm-Grid Integration: A Review on Infrastructure, Challenges, and Grid Solutions

    Get PDF
    Recently, the penetration of renewable energy sources (RESs) into electrical power systems is witnessing a large attention due to their inexhaustibility, environmental benefits, storage capabilities, lower maintenance and stronger economy, etc. Among these RESs, offshore wind power plants (OWPP) are ones of the most widespread power plants that have emerged with regard to being competitive with other energy technologies. However, the application of power electronic converters (PECs), offshore transmission lines and large substation transformers result in considerable power quality (PQ) issues in grid connected OWPP. Moreover, due to the installation of filters for each OWPP, some other challenges such as voltage and frequency stability arise. In this regard, various customs power devices along with integration control methodologies have been implemented to deal with stated issues. Furthermore, for a smooth and reliable operation of the system, each country established various grid codes. Although various mitigation schemes and related standards for OWPP are documented separately, a comprehensive review covering these aspects has not yet addressed in the literature. The objective of this study is to compare and relate prior as well as latest developments on PQ and stability challenges and their solutions. Low voltage ride through (LVRT) schemes and associated grid codes prevalent for the interconnection of OWPP based power grid have been deliberated. In addition, various PQ issues and mitigation options such as FACTS based filters, DFIG based adaptive and conventional control algorithms, ESS based methods and LVRT requirements have been summarized and compared. Finally, recommendations and future trends for PQ improvement are highlighted at the end

    Power Quality Improvement and Low Voltage Ride through Capability in Hybrid Wind-PV Farms Grid-Connected Using Dynamic Voltage Restorer

    Get PDF
    © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission.This paper proposes the application of a dynamic voltage restorer (DVR) to enhance the power quality and improve the low voltage ride through (LVRT) capability of a three-phase medium-voltage network connected to a hybrid distribution generation system. In this system, the photovoltaic (PV) plant and the wind turbine generator (WTG) are connected to the same point of common coupling (PCC) with a sensitive load. The WTG consists of a DFIG generator connected to the network via a step-up transformer. The PV system is connected to the PCC via a two-stage energy conversion (dc-dc converter and dc-ac inverter). This topology allows, first, the extraction of maximum power based on the incremental inductance technique. Second, it allows the connection of the PV system to the public grid through a step-up transformer. In addition, the DVR based on fuzzy logic controller is connected to the same PCC. Different fault condition scenarios are tested for improving the efficiency and the quality of the power supply and compliance with the requirements of the LVRT grid code. The results of the LVRT capability, voltage stability, active power, reactive power, injected current, and dc link voltage, speed of turbine, and power factor at the PCC are presented with and without the contribution of the DVR system.Peer reviewe

    Supervisory Control of Full Converter Wind Generation Systems to Meet International Grid Codes

    Get PDF
    This thesis proposes a new supervisory control scheme for full converter wind generators (FCWGs) in compliance with the latest international grid codes. Intermittent behaviour of wind turbines and maximum converter capacity are taken into account in determining the reactive power injection to the grid following severe disturbance. Detailed simulations show that the proposed controller can improve the fault-ride-through capability of FCWGs while also providing support to the network as required by the grid codes

    Techniques for Ensuring Fault Ride-Through Capability of Grid Connected DFIG-Based Wind Turbine Systems: A Review

    Get PDF
    Renewable energy sources (RES) are being integrated to electrical grid to complement the conventional sources to meet up with global electrical energy demand. Among other RES, Wind Energy Conversion Systems (WECS) with Doubly Fed Induction Generator (DFIG) have gained global electricity market competitiveness because of the flexible regulation of active and reactive power, higher power quality, variable speed operation, four quadrant converter operation and better dynamic performance. Grid connected DFIG-based WECS are prone to disturbances in the network because of direct connection of stator windings to grid. The ability of the Wind Turbine (WT) to remain connected during grid faults is termed the Fault Ride-Through (FRT) capability. The grid code requirement for integrating the DFIG-based WTs to power networks specified that they must remain connected and support the grid stability during grid disturbances of up to 1500 ms. The use of compensation devices offers the best FRT compliance thereby protecting the DFIG and the converters from voltage fluctuations and over currents during the grid fault. The paper presents a review of techniques employed in ensuring FRT compliance. The article also proposes the state-of-the-art techniques for compensating voltage sag/swell and limiting the fault short-circuit current. Keywords: Renewable energy sources, DFIG, wind turbine system, fault ride-through, grid codes, dual-functional DV
    • …
    corecore