24,113 research outputs found

    Fault Localization Models in Debugging

    Full text link
    Debugging is considered as a rigorous but important feature of software engineering process. Since more than a decade, the software engineering research community is exploring different techniques for removal of faults from programs but it is quite difficult to overcome all the faults of software programs. Thus, it is still remains as a real challenge for software debugging and maintenance community. In this paper, we briefly introduced software anomalies and faults classification and then explained different fault localization models using theory of diagnosis. Furthermore, we compared and contrasted between value based and dependencies based models in accordance with different real misbehaviours and presented some insight information for the debugging process. Moreover, we discussed the results of both models and manifested the shortcomings as well as advantages of these models in terms of debugging and maintenance.Comment: 58-6

    Learning Tractable Probabilistic Models for Fault Localization

    Full text link
    In recent years, several probabilistic techniques have been applied to various debugging problems. However, most existing probabilistic debugging systems use relatively simple statistical models, and fail to generalize across multiple programs. In this work, we propose Tractable Fault Localization Models (TFLMs) that can be learned from data, and probabilistically infer the location of the bug. While most previous statistical debugging methods generalize over many executions of a single program, TFLMs are trained on a corpus of previously seen buggy programs, and learn to identify recurring patterns of bugs. Widely-used fault localization techniques such as TARANTULA evaluate the suspiciousness of each line in isolation; in contrast, a TFLM defines a joint probability distribution over buggy indicator variables for each line. Joint distributions with rich dependency structure are often computationally intractable; TFLMs avoid this by exploiting recent developments in tractable probabilistic models (specifically, Relational SPNs). Further, TFLMs can incorporate additional sources of information, including coverage-based features such as TARANTULA. We evaluate the fault localization performance of TFLMs that include TARANTULA scores as features in the probabilistic model. Our study shows that the learned TFLMs isolate bugs more effectively than previous statistical methods or using TARANTULA directly.Comment: Fifth International Workshop on Statistical Relational AI (StaR-AI 2015

    Test Case Purification for Improving Fault Localization

    Get PDF
    Finding and fixing bugs are time-consuming activities in software development. Spectrum-based fault localization aims to identify the faulty position in source code based on the execution trace of test cases. Failing test cases and their assertions form test oracles for the failing behavior of the system under analysis. In this paper, we propose a novel concept of spectrum driven test case purification for improving fault localization. The goal of test case purification is to separate existing test cases into small fractions (called purified test cases) and to enhance the test oracles to further localize faults. Combining with an original fault localization technique (e.g., Tarantula), test case purification results in better ranking the program statements. Our experiments on 1800 faults in six open-source Java programs show that test case purification can effectively improve existing fault localization techniques

    The characterization of recycled concrete aggregate as filter in removal of phosphorus

    Get PDF
    Phosphorus (P) is one of the key nutrients that lead to eutrophication problem in surface water. However, the existing conventional wastewater treatment system to remove phosphorus is expensive and require a complex process. Therefore, a system using low cost and environmental friendly should be practiced to overcome this problem. Recycled concrete aggregate (RCA) used as a filter system emerged as an alternative technology for phosphorus removal. This can overcome the problem of construction site waste by converting the waste into something valuable products. Thus, this study aim to investigate the physical and chemical characteristic of RCA that influenced adsorption of P. RCA was analyzed using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) testing to determine chemical composition. Results shows that RCA is highly contained with Aluminium, Calcium and Magnesium elements that enhanced the Phosphorus adsorption
    corecore