3,996 research outputs found

    Quantifying the reliability of fault classifiers

    No full text
    International audienceFault diagnostics problems can be formulated as classification tasks. Due to limited data and to uncertainty, classification algorithms are not perfectly accurate in practical applications. Maintenance decisions based on erroneous fault classifications result in inefficient resource allocations and/or operational disturbances. Thus, knowing the accuracy of classifiers is important to give confidence in the maintenance decisions. The average accuracy of a classifier on a test set of data patterns is often used as a measure of confidence in the performance of a specific classifier. However, the performance of a classifier can vary in different regions of the input data space. Several techniques have been proposed to quantify the reliability of a classifier at the level of individual classifications. Many of the proposed techniques are only applicable to specific classifiers, such as ensemble techniques and support vector machines. In this paper, we propose a meta approach based on the typicalness framework (Kolmogorov's concept of randomness), which is independent of the applied classifier. We apply the approach to a case of fault diagnosis in railway turnout systems and compare the results obtained with both extreme learning machines and echo state networks

    Automatic Alarm Correlation for Fault Identification *

    Get PDF
    Abstract In communication networks, a large number of alarms exist to signal any abnormal behavior of the network. As network faults typically result in a number of alarms, correlating these different alarms and identifying their source is a major problem in fault management. The alarm correlation problem is of major practical significance. Alarms that have not been correlated may not only lead to significant misdirected efforts, based on insufficient information, but may cause multiple COTrective actions (possibly contradictory) as each alert is handled independently. This paper proposes a general framework to solve the alarm correlation problem. We introduce a new model for faults and alarms based on probabilistic finite state machines. We propose two algorithms. The first one acquires the fault models starting from possibly incomplete and incorrect data. The second one correlates alarms in the presence of multiple faults and noisy information. Both algorithms have polynomial time complexity, use an extension of the Viterbi algorithm to deal with the corrupted data, and can be implemented in hardware. As an example, they are applied to analyze faults using data generated by the ANS (Advanced Network and Services, Inc.)/NSF T 3 network

    Fault tolerant architectures for integrated aircraft electronics systems, task 2

    Get PDF
    The architectural basis for an advanced fault tolerant on-board computer to succeed the current generation of fault tolerant computers is examined. The network error tolerant system architecture is studied with particular attention to intercluster configurations and communication protocols, and to refined reliability estimates. The diagnosis of faults, so that appropriate choices for reconfiguration can be made is discussed. The analysis relates particularly to the recognition of transient faults in a system with tasks at many levels of priority. The demand driven data-flow architecture, which appears to have possible application in fault tolerant systems is described and work investigating the feasibility of automatic generation of aircraft flight control programs from abstract specifications is reported

    Probing context-dependent errors in quantum processors

    Full text link
    Gates in error-prone quantum information processors are often modeled using sets of one- and two-qubit process matrices, the standard model of quantum errors. However, the results of quantum circuits on real processors often depend on additional external "context" variables. Such contexts may include the state of a spectator qubit, the time of data collection, or the temperature of control electronics. In this article we demonstrate a suite of simple, widely applicable, and statistically rigorous methods for detecting context dependence in quantum circuit experiments. They can be used on any data that comprise two or more "pools" of measurement results obtained by repeating the same set of quantum circuits in different contexts. These tools may be integrated seamlessly into standard quantum device characterization techniques, like randomized benchmarking or tomography. We experimentally demonstrate these methods by detecting and quantifying crosstalk and drift on the publicly accessible 16-qubit ibmqx3.Comment: 11 pages, 3 figures, code and data available in source file

    Coding approaches to fault tolerance in dynamic systems

    Get PDF
    Also issued as Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 189-196).Sponsored through a contract with Sanders, A Lockheed Martin Company.Christoforos N. Hadjicostis
    corecore