71 research outputs found

    Detection and diagnosis of fault bearing using wavelet packet transform and neural network

    Get PDF
    Bearings, considered crucial components in rotating machinery, are widely used in the industry. Bearing status monitoring has become an essential step in the deployment of preventive maintenance policy. This work is part of the diagnosis and classification of bearing defects by vibration analysis of signals from defective bearings using time domain and frequency analysis and wavelet packet transformations (Wavelet Packet Transform WPT) with Artificial Neural Networks (ANN). WPT is used for extracting defect indicators to train the neural classifier. The main goal is the determination of the wavelet generating the most representative indicators of the state of the bearings for better detection and classification of defects. Using the WPT-based neural classifier, the obtained simulation results showed that the db6 wavelet with level 3 decomposition is best suited for diagnosing and classifying bearing defect

    Noise eliminated ensemble empirical mode decomposition scalogram analysis for rotating machinery fault diagnosis

    Get PDF
    Rotating machinery is one type of major industrial component that suffers from various faults and damage due to the constant workload to which it is subjected. Therefore, a fast and reliable fault diagnosis method is essential for machine condition monitoring. Artificial intelligence can be applied in fault feature extraction and classification. It is crucial to use an effective feature extraction method to obtain most of the fault information and a robust classifier to classify those features. In this study, an improved method, noise-eliminated ensemble empirical mode decomposition (NEEEMD), was proposed to reduce the white noise in the intrinsic functions and retain the optimum ensembles. A convolution neural network (CNN) classifier was applied for classification because of its feature-learning ability. A generalised CNN architecture was proposed to reduce the model training time. The classifier input used was 64×64 pixel RGB scalogram samples. However, CNN requires a large amount of training data to achieve high accuracy and robustness. Deep convolution generative adversarial network (DCGAN) was applied for data augmentation during the training phase. To evaluate the effectiveness of the proposed feature extraction method, scalograms from the related feature extraction methods such as ensemble empirical mode decomposition (EEMD), complementary EEMD (CEEMD) and continuous wavelet transform (CWT) were also classified. The effectiveness of the scalograms was also validated by comparing the classifier performance using greyscale samples from the raw vibration signals. The ability of CNN was compared with two traditional machine learning algorithms, k nearest neighbour (kNN) and the support vector machine (SVM), using statistical features from EEMD, CEEMD and NEEEMD. The proposed method was validated using bearing and blade datasets. The results show that the machine learning algorithms achieved comparatively lower accuracy than the proposed CNN model. All the outputs from the bearing and blade fault classifiers demonstrated that the scalogram samples from the proposed NEEEMD method obtained the highest accuracy, sensitivity and robustness using CNN. DCGAN was applied with the proposed NEEEMD scalograms to enhance the CNN classifier’s performance further and identify the optimal amount of training data. After training the classifier using the augmented samples, the results showed that the classifier obtained even higher validation and test accuracy with greater robustness. The test accuracies improved from 98%, 96.31% and 92.25% to 99.6%, 98.29% and 93.59%, respectively, for the different classifier models using NEEEMD. The proposed method can be used as a more generalised and robust method for rotating machinery fault diagnosis

    MACHINERY ANOMALY DETECTION UNDER INDETERMINATE OPERATING CONDITIONS

    Get PDF
    Anomaly detection is a critical task in system health monitoring. Current practice of anomaly detection in machinery systems is still unsatisfactory. One issue is with the use of features. Some features are insensitive to the change of health, and some are redundant with each other. These insensitive and redundant features in the data mislead the detection. Another issue is from the influence of operating conditions, where a change in operating conditions can be mistakenly detected as an anomalous state of the system. Operating conditions are usually changing, and they may not be readily identified. They contribute to false positive detection either from non-predictive features driven by operating conditions, or from influencing predictive features. This dissertation contributes to the reduction of false detection by developing methods to select predictive features and use them to span a space for anomaly detection under indeterminate operating conditions. Available feature selection methods fail to provide consistent results when some features are correlated. A method was developed in this dissertation to explore the correlation structure of features and group correlated features into the same clusters. A representative feature from each cluster is selected to form a non-correlated set of features, where an optimized subset of predictive features is selected. After feature selection, the influence of operating conditions through non-predictive variables are removed. To remove the influence on predictive features, a clustering-based anomaly detection method is developed. Observations are collected when the system is healthy, and these observations are grouped into clusters corresponding to the states of operating conditions with automatic estimation of clustering parameters. Anomalies are detected if the test data are not members of the clusters. Correct partitioning of clusters is an open challenge due to the lack of research on the clustering of the machinery health monitoring data. This dissertation uses unimodality of the data as a criterion for clustering validation, and a unimodality-based clustering method is developed. Methods of this dissertation were evaluated by simulated data, benchmark data, experimental study and field data. These methods provide consistent results and outperform representatives of available methods. Although the focus of this dissertation is on the application of machinery systems, the methods developed in this dissertation can be adapted for other application scenarios for anomaly detection, feature selection, and clustering

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    Predictive Maintenance of an External Gear Pump using Machine Learning Algorithms

    Get PDF
    The importance of Predictive Maintenance is critical for engineering industries, such as manufacturing, aerospace and energy. Unexpected failures cause unpredictable downtime, which can be disruptive and high costs due to reduced productivity. This forces industries to ensure the reliability of their equip-ment. In order to increase the reliability of equipment, maintenance actions, such as repairs, replacements, equipment updates, and corrective actions are employed. These actions affect the flexibility, quality of operation and manu-facturing time. It is therefore essential to plan maintenance before failure occurs.Traditional maintenance techniques rely on checks conducted routinely based on running hours of the machine. The drawback of this approach is that maintenance is sometimes performed before it is required. Therefore, conducting maintenance based on the actual condition of the equipment is the optimal solu-tion. This requires collecting real-time data on the condition of the equipment, using sensors (to detect events and send information to computer processor).Predictive Maintenance uses these types of techniques or analytics to inform about the current, and future state of the equipment. In the last decade, with the introduction of the Internet of Things (IoT), Machine Learning (ML), cloud computing and Big Data Analytics, manufacturing industry has moved forward towards implementing Predictive Maintenance, resulting in increased uptime and quality control, optimisation of maintenance routes, improved worker safety and greater productivity.The present thesis describes a novel computational strategy of Predictive Maintenance (fault diagnosis and fault prognosis) with ML and Deep Learning applications for an FG304 series external gear pump, also known as a domino pump. In the absence of a comprehensive set of experimental data, synthetic data generation techniques are implemented for Predictive Maintenance by perturbing the frequency content of time series generated using High-Fidelity computational techniques. In addition, various types of feature extraction methods considered to extract most discriminatory informations from the data. For fault diagnosis, three types of ML classification algorithms are employed, namely Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Naive Bayes (NB) algorithms. For prognosis, ML regression algorithms, such as MLP and SVM, are utilised. Although significant work has been reported by previous authors, it remains difficult to optimise the choice of hyper-parameters (important parameters whose value is used to control the learning process) for each specific ML algorithm. For instance, the type of SVM kernel function or the selection of the MLP activation function and the optimum number of hidden layers (and neurons).It is widely understood that the reliability of ML algorithms is strongly depen-dent upon the existence of a sufficiently large quantity of high-quality training data. In the present thesis, due to the unavailability of experimental data, a novel high-fidelity in-silico dataset is generated via a Computational Fluid Dynamic (CFD) model, which has been used for the training of the underlying ML metamodel. In addition, a large number of scenarios are recreated, ranging from healthy to faulty ones (e.g. clogging, radial gap variations, axial gap variations, viscosity variations, speed variations). Furthermore, the high-fidelity dataset is re-enacted by using degradation functions to predict the remaining useful life (fault prognosis) of an external gear pump.The thesis explores and compares the performance of MLP, SVM and NB algo-rithms for fault diagnosis and MLP and SVM for fault prognosis. In order to enable fast training and reliable testing of the MLP algorithm, some predefined network architectures, like 2n neurons per hidden layer, are used to speed up the identification of the precise number of neurons (shown to be useful when the sample data set is sufficiently large). Finally, a series of benchmark tests are presented, enabling to conclude that for fault diagnosis, the use of wavelet features and a MLP algorithm can provide the best accuracy, and the MLP al-gorithm provides the best prediction results for fault prognosis. In addition, benchmark examples are simulated to demonstrate the mesh convergence for the CFD model whereas, quantification analysis and noise influence on training data are performed for ML algorithms

    ROBUST FAULT ANALYSIS FOR PERMANENT MAGNET DC MOTOR IN SAFETY CRITICAL APPLICATIONS

    Get PDF
    Robust fault analysis (FA) including the diagnosis of faults and predicting their level of severity is necessary to optimise maintenance and improve reliability of Aircraft. Early diagnosis of faults that might occur in the supervised process renders it possible to perform important preventative actions. The proposed diagnostic models were validated in two experimental tests. The first test concerned a single localised and generalised roller element bearing fault in a permanent magnet brushless DC (PMBLDC) motor. Rolling element bearing defect is one of the main reasons for breakdown in electrical machines. Vibration and current are analysed under stationary and non-stationary load and speed conditions, for a variety of bearing fault severities, and for both local and global bearing faults. The second test examined the case of an unbalance rotor due to blade faults in a thruster, motor based on a permanent magnet brushed DC (PMBDC) motor. A variety of blade fault conditions were investigated, over a wide range of rotation speeds. The test used both discrete wavelet transform (DWT) to extract the useful features, and then feature reduction techniques to avoid redundant features. This reduces computation requirements and the time taken for classification by the application of an orthogonal fuzzy neighbourhood discriminant analysis (OFNDA) approach. The real time monitoring of motor operating conditions is an advanced technique that presents the real performance of the motor, so that the dynamic recurrent neural network (DRNN) proposed predicts the conditions of components and classifies the different faults under different operating conditions. The results obtained from real time simulation demonstrate the effectiveness and reliability of the proposed methodology in accurately classifying faults and predicting levels of fault severity.the Iraqi Ministry of Higher Education and Scientific Researc

    IoT-Based Decision Support System for Health Monitoring of Induction Motors

    Get PDF
    An electrical motor is a common device that is used for a variety of electrical purposes. Because of their wide range of applications, motors that are both reliable and long-lasting are in high demand. Motors are prone to a variety of faults, including rotor bar breaking faults, short turn faults, bearing outrace faults, and so on. Unexpected faults or failures in these motors reduce workplace productivity. The time it takes to resolve the issues reduces the organization’s profit. Bearing failures account for approximately 42% of all faults. Due to continuous operation, the shape of the majority of electrical motors with rolling bearings becomes disproportional. This causes the motor’s elastic limit to be exceeded, as well as fractures, vibrations, and a rise in temperature. A good solution is to switch from scheduled maintenance to predictive maintenance, which is based on monitoring the motor’s operating condition. This chapter proposes an Internet of Things (IoT)-based solution that continuously monitors and records the vibration from the induction motor. A decision support system analyzes the impact of vibration using log data and the Naïve Bayes classifier. The proposed decision support system detects the critical level of vibration and notifies the user of the motor’s abnormal working condition

    Multinomial logistic regression probability ratio-based feature vectors for Malay vowel recognition

    Get PDF
    Vowel Recognition is a part of automatic speech recognition (ASR) systems that classifies speech signals into groups of vowels. The performance of Malay vowel recognition (MVR) like any multiclass classification problem depends largely on Feature Vectors (FVs). FVs such as Mel-frequency Cepstral Coefficients (MFCC) have produced high error rates due to poor phoneme information. Classifier transformed probabilistic features have proved a better alternative in conveying phoneme information. However, the high dimensionality of the probabilistic features introduces additional complexity that deteriorates ASR performance. This study aims to improve MVR performance by proposing an algorithm that transforms MFCC FVs into a new set of features using Multinomial Logistic Regression (MLR) to reduce the dimensionality of the probabilistic features. This study was carried out in four phases which are pre-processing and feature extraction, best regression coefficients generation, feature transformation, and performance evaluation. The speech corpus consists of 1953 samples of five Malay vowels of /a/, /e/, /i/, /o/ and /u/ recorded from students of two public universities in Malaysia. Two sets of algorithms were developed which are DBRCs and FELT. DBRCs algorithm determines the best regression coefficients (DBRCs) to obtain the best set of regression coefficients (RCs) from the extracted 39-MFCC FVs through resampling and data swapping approach. FELT algorithm transforms 39-MFCC FVs using logistic transformation method into FELT FVs. Vowel recognition rates of FELT and 39-MFCC FVs were compared using four different classification techniques of Artificial Neural Network, MLR, Linear Discriminant Analysis, and k-Nearest Neighbour. Classification results showed that FELT FVs surpass the performance of 39-MFCC FVs in MVR. Depending on the classifiers used, the improved performance of 1.48% - 11.70% was attained by FELT over MFCC. Furthermore, FELT significantly improved the recognition accuracy of vowels /o/ and /u/ by 5.13% and 8.04% respectively. This study contributes two algorithms for determining the best set of RCs and generating FELT FVs from MFCC. The FELT FVs eliminate the need for dimensionality reduction with comparable performances. Furthermore, FELT FVs improved MVR for all the five vowels especially /o/ and /u/. The improved MVR performance will spur the development of Malay speech-based systems, especially for the Malaysian community
    corecore