5,615 research outputs found

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted Components

    Get PDF
    The semiconductor industry is fully globalized and integrated circuits (ICs) are commonly defined, designed and fabricated in different premises across the world. This reduces production costs, but also exposes ICs to supply chain attacks, where insiders introduce malicious circuitry into the final products. Additionally, despite extensive post-fabrication testing, it is not uncommon for ICs with subtle fabrication errors to make it into production systems. While many systems may be able to tolerate a few byzantine components, this is not the case for cryptographic hardware, storing and computing on confidential data. For this reason, many error and backdoor detection techniques have been proposed over the years. So far all attempts have been either quickly circumvented, or come with unrealistically high manufacturing costs and complexity. This paper proposes Myst, a practical high-assurance architecture, that uses commercial off-the-shelf (COTS) hardware, and provides strong security guarantees, even in the presence of multiple malicious or faulty components. The key idea is to combine protective-redundancy with modern threshold cryptographic techniques to build a system tolerant to hardware trojans and errors. To evaluate our design, we build a Hardware Security Module that provides the highest level of assurance possible with COTS components. Specifically, we employ more than a hundred COTS secure crypto-coprocessors, verified to FIPS140-2 Level 4 tamper-resistance standards, and use them to realize high-confidentiality random number generation, key derivation, public key decryption and signing. Our experiments show a reasonable computational overhead (less than 1% for both Decryption and Signing) and an exponential increase in backdoor-tolerance as more ICs are added

    An Improved Belief Entropy and Its Application in Decision-Making

    Get PDF

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Interpersonal and affective dimensions of psychopathic traits in adolescents : development and validation of a self-report instrument

    Get PDF
    We report the development and psychometric evaluations of a self-report instrument designed to screen for psychopathic traits among mainstream community adolescents. Tests of item functioning were initially conducted with 26 adolescents. In a second study the new instrument was administered to 150 high school adolescents, 73 of who had school records of suspension for antisocial behavior. Exploratory factor analysis yielded a 4-factor structure (Impulsivity α = .73, Self-Centredness α = .70, Callous-Unemotional α = .69, and Manipulativeness α = .83). In a third study involving 328 high school adolescents, 130 with records of suspension for antisocial behaviour, competing measurement models were evaluated using confirmatory factor analysis. The superiority of a first-order model represented by four correlated factors that was invariant across gender and age was confirmed. The findings provide researchers and clinicians with a psychometrically strong, self-report instrument and a greater understanding of psychopathic traits in mainstream adolescents

    Algorithms for Fault Detection and Diagnosis

    Get PDF
    Due to the increasing demand for security and reliability in manufacturing and mechatronic systems, early detection and diagnosis of faults are key points to reduce economic losses caused by unscheduled maintenance and downtimes, to increase safety, to prevent the endangerment of human beings involved in the process operations and to improve reliability and availability of autonomous systems. The development of algorithms for health monitoring and fault and anomaly detection, capable of the early detection, isolation, or even prediction of technical component malfunctioning, is becoming more and more crucial in this context. This Special Issue is devoted to new research efforts and results concerning recent advances and challenges in the application of “Algorithms for Fault Detection and Diagnosis”, articulated over a wide range of sectors. The aim is to provide a collection of some of the current state-of-the-art algorithms within this context, together with new advanced theoretical solutions

    PEMFC performance improvement through oxygen starvation prevention, modeling, and diagnosis of hydrogen leakage

    Get PDF
    Catalyst degradation results in emerging pinholes in Proton Exchange Membrane Fuel Cells (PEMFCs) and subsequently hydrogen leakage. Oxygen starvation resulting from hydrogen leaks is one of the primary life-limiting factors in PEMFCs. Voltage reduces as a result of oxygen starvation, and the cell performance deteriorates. Starved PEMFCs also work as a hydrogen pump, increasing the amount of hydrogen on the cathode side, resulting in hydrogen emissions. Therefore, it is important to delay the occurrence of oxygen starvation within the Membrane Electrode Assembly (MEA) while simultaneously be able to diagnose the hydrogen crossover through the pinholes. In this work, first, we focus on catalyst configuration as a novel method to prevent oxygen starvation and catalyst degradation. It is hypothesized that the redistribution of the platinum catalyst can increase the maximum current density and prevent oxygen starvation and catalyst degradation. Therefore, a multi-objective optimization problem is defined to maximize fuel cell efficiency and to prevent oxygen starvation in the PEMFC. Results indicate that the maximum current density rises about eight percent, while the maximum PEMFC power density increases by twelve percent. In the next step, a previously developed pseudo two-dimensional model is used to simulate fuel cell behavior in the normal and the starvation mode. This model is developed further to capture the effect of the hydrogen pumping phenomenon and to measure the amount of hydrogen in the outlet of the cathode channel. The results obtained from the model are compared with the experimental data, and validation shows that the proposed model is fast and precise. Next, Machine Learning (ML) estimators are used to first detect whether there is a hydrogen crossover in the fuel cell and second to capture the amount of hydrogen cross over. K Nearest Neighbour (KNN) and Artificial Neural Network (ANN) estimators are chosen for leakage detection and classification. Eventually, a pair of ANN classifier-regressor is chosen to first isolate leaky PEMFCs and then quantify the amount of leakage. The classifier and regressor are both trained on the datasets that are generated by the pseudo two-dimensional model. Different performance indexes are evaluated to assure that the model is not underfitting/overfitting. This ML diagnosis algorithm can be employed as an onboard diagnosis system that can be used to detect and possibly prevent cell reversal failures

    MULTI-PLAYER BELIEF CALCULI: MODELS AND APPLICATIONS

    Get PDF
    In developing methods for dealing with uncertainty in reasoning systems, it is important to consider the needs of the target applications. In particular, when the source of inferential uncertainty can be tracked to distributions of expert opinions, there might be different ways to model the representation and combination of these opinions. In this paper we present the notion of multiplayer belief calculi - a framework that takes into consideration not only the 'regular' type of evidential uncertainty, but also the diversity of expert opinions when the evidence is held fixed. Using several applied examples, we show how the basic framework can be naturally extended to support different application needs and different sets of assumptions about the nature of the inference process.Information Systems Working Papers Serie
    corecore