1,569 research outputs found

    Fault Diagnosis of Hybrid Computing Systems Using Chaotic-Map Method

    Get PDF
    Computing systems are becoming increasingly complex with nodes consisting of a combination of multi-core central processing units (CPUs), many integrated core (MIC) and graphics processing unit (GPU) accelerators. These computing units and their interconnections are subject to different classes of hardware and software faults, which should be detected to support mitigation measures. We present the chaotic-map method that uses the exponential divergence and wide Fourier properties of the trajectories, combined with memory allocations and assignments to diagnose component-level faults in these hybrid computing systems. We propose lightweight codes that utilize highly parallel chaotic-map computations tailored to isolate faults in arithmetic units, memory elements and interconnects. The diagnosis module on a node utilizes pthreads to place chaotic-map threads on CPU and MIC cores, and CUDA C and OpenCL kernels on GPU blocks. We present experimental diagnosis results on five multi-core CPUs; one MIC; and, seven GPUs with typical diagnosis run-times under a minute

    Resilience for Asynchronous Iterative Methods for Sparse Linear Systems

    Get PDF
    Large scale simulations are used in a variety of application areas in science and engineering to help forward the progress of innovation. Many spend the vast majority of their computational time attempting to solve large systems of linear equations; typically arising from discretizations of partial differential equations that are used to mathematically model various phenomena. The algorithms used to solve these problems are typically iterative in nature, and making efficient use of computational time on High Performance Computing (HPC) clusters involves constantly improving these iterative algorithms. Future HPC platforms are expected to encounter three main problem areas: scalability of code, reliability of hardware, and energy efficiency of the platform. The HPC resources that are expected to run the large programs are planned to consist of billions of processing units that come from more traditional multicore processors as well as a variety of different hardware accelerators. This growth in parallelism leads to the presence of all three problems. Previously, work on algorithm development has focused primarily on creating fault tolerance mechanisms for traditional iterative solvers. Recent work has begun to revisit using asynchronous methods for solving large scale applications, and this dissertation presents research into fault tolerance for fine-grained methods that are asynchronous in nature. Classical convergence results for asynchronous methods are revisited and modified to account for the possible occurrence of a fault, and a variety of techniques for recovery from the effects of a fault are proposed. Examples of how these techniques can be used are shown for various algorithms, including an analysis of a fine-grained algorithm for computing incomplete factorizations. Lastly, numerous modeling and simulation tools for the further construction of iterative algorithms for HPC applications are developed, including numerical models for simulating faults and a simulation framework that can be used to extrapolate the performance of algorithms towards future HPC systems
    • …
    corecore