926 research outputs found

    Experimental set-up for investigation of fault diagnosis of a centrifugal pump

    Get PDF
    Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated

    Design and Development of a Decision Support System for Safety Management of Rotary Pump Systems

    Get PDF
    Increasing technological advancement and complexity have made it necessary to develop more effective approaches to safety, reliability and quality. This paper presents the design and development of decision support system for safety management of rotary system using computational intelligent techniques. The rotary system considered for this research paper is centrifugal pumping system. This paper presents the application of Neural Network approach for fault detection and fuzzy logic approach for fault diagnosis in centrifugal pumping system. This paper highlights the development of decision support system integrating all the subsystem for a real-world application of computational intelligent techniques to solve a complex problem, which contributes to the prevention of accidents and preparation for emergency response. The results are compared and the conclusions are presented which demonstrate the possible application of industrial use

    Artificial neural network based classification of faults in centrifugal water pump

    Get PDF
    The detection and diagnosis of faults are of great practical significance for the safe operation of a plant. Early detection of fault can help avoid system shutdown, breakdown and even catastrophe involving human fatalities and material damage. This paper presents the design and development of ANN-based model for the fault detection of centrifugal water pump using a back-propagation learning algorithm and multi-layer perceptron neural network. The centrifugal pump conditions were considered to be healthy pump and faulty impeller and faulty seal and cavitation, which were four neurons of output layer with the aim of fault detection and identification. Features vector, which is one of the most significant parameters to design an appropriate neural network, was extracted from analysis of vibration signals in frequency domain by means of FFT method. The statistical features of vibration signals such as mean, standard deviation, variance, skewness and kurtosis were used as input to ANN. Different neural network structures are analyzed to determine the optimal neural network with regards to the number of hidden layers. The results indicate that the designed system is capable of classifying records with 100 % accuracy with one hidden layer of neurons in the neural network

    Deep Learning for Enhanced Fault Diagnosis of Monoblock Centrifugal Pumps: Spectrogram-Based Analysis

    Get PDF
    Abstract The reliable operation of monoblock centrifugal pumps (MCP) is crucial in various industrial applications. Achieving optimal performance and minimizing costly downtime requires effectively detecting and diagnosing faults in critical pump components. This study proposes an innovative approach that leverages deep transfer learning techniques. An accelerometer was adopted to capture vibration signals emitted by the pump. These signals are then converted into spectrogram images which serve as the input for a sophisticated classification system based on deep learning. This enables the accurate identification and diagnosis of pump faults. To evaluate the effectiveness of the proposed methodology, 15 pre-trained networks including ResNet-50, InceptionV3, GoogLeNet, DenseNet-201, ShuffleNet, VGG-19, MobileNet-v2, InceptionResNetV2, VGG-16, NasNetmobile, EfficientNetb0, AlexNet, ResNet-18, Xception, ResNet101 and ResNet-18 were employed. The experimental results demonstrate the efficacy of the proposed approach with AlexNet exhibiting the highest level of accuracy among the pre-trained networks. Additionally, a meticulous evaluation of the execution time of the classification process was performed. AlexNet achieved 100.00% accuracy with an impressive execution (training) time of 17 s. This research provides invaluable insights into applying deep transfer learning for fault detection and diagnosis in MCP. Using pre-trained networks offers an efficient and precise solution for this task. The findings of this study have the potential to significantly enhance the reliability and maintenance practices of MCP in various industrial settings

    A vibration cavitation sensitivity parameter based on spectral and statistical methods

    Get PDF
    Cavitation is one of the main problems reducing the longevity of centrifugal pumps in industry today. If the pump operation is unable to maintain operating conditions around the best efficiency point, it can be subject to conditions that may lead to vaporisation or flashing in the pipes upstream of the pump. The implosion of these vapour bubbles in the impeller or volute causes damaging effects to the pump. A new method of vibration cavitation detection is proposed in this paper, based on adaptive octave band analysis, principal component analysis and statistical metrics. Full scale industrial pump efficiency testing data was used to determine the initial cavitation parameters for the analysis. The method was then tested using vibration measured from a number of industry pumps used in the water industry. Results were compared to knowledge known about the state of the pump, and the classification of the pump according to ISO 10816

    Energy-efficient control of pump units based on neural-network parameter observer

    Get PDF
    An observer based on an artificial neural network was designed. The observer determines the pumping unit performance depending on the operating point. Determination is based on the measured technological coordinates of the system and the pressure of the turbomechanism. Three neural networks were designed for three types of the productivity observer. The developed observer was investigated by the simulation method within different variations of disturbing actions, such as hydraulic resistance of the hydraulic system and geodetic pressure. A comparative analysis of three types of the productivity observer, built with using the pressure and different signals of the system with arbitrary change of hydraulic resistance was given. By the use of the pump unit efficiency observer, in addition to the results presented earlier, the efficiency of the productivity observer, which built with using different sensors, in water supply systems with two series-connected pump units, operating for filling the large tank, is researched. In the water supply system one pump speed is regulated, the other is unregulated. References 14, figures 5

    A Study on Comparison of Classification Algorithms for Pump Failure Prediction

    Get PDF
    The reliability of pumps can be compromised by faults, impacting their functionality. Detecting these faults is crucial, and many studies have utilized motor current signals for this purpose. However, as pumps are rotational equipped, vibrations also play a vital role in fault identification. Rising pump failures have led to increased maintenance costs and unavailability, emphasizing the need for cost-effective and dependable machinery operation. This study addresses the imperative challenge of defect classification through the lens of predictive modeling. With a problem statement centered on achieving accurate and efficient identification of defects, this study’s objective is to evaluate the performance of five distinct algorithms: Fine Decision Tree, Medium Decision Tree, Bagged Trees (Ensemble), RUS-Boosted Trees, and Boosted Trees. Leveraging a comprehensive dataset, the study meticulously trained and tested each model, analyzing training accuracy, test accuracy, and Area Under the Curve (AUC) metrics. The results showcase the supremacy of the Fine Decision Tree (91.2% training accuracy, 74% test accuracy, AUC 0.80), the robustness of the Ensemble approach (Bagged Trees with 94.9% training accuracy, 99.9% test accuracy, and AUC 1.00), and the competitiveness of Boosted Trees (89.4% training accuracy, 72.2% test accuracy, AUC 0.79) in defect classification. Notably, Support Vector Machines (SVM), Artificial Neural Networks (ANN), and k-Nearest Neighbors (KNN) exhibited comparatively lower performance. Our study contributes valuable insights into the efficacy of these algorithms, guiding practitioners toward optimal model selection for defect classification scenarios. This research lays a foundation for enhanced decision-making in quality control and predictive maintenance, fostering advancements in the realm of defect prediction and classification

    A robust fault diagnosis and forecasting approach based on Kalman filter and interval type-2 fuzzy logic for efficiency improvement of centrifugal gas compressor system

    Get PDF
    The paper proposes a robust faults detection and forecasting approach for a centrifugal gas compressor system, the mechanism of this approach used the Kalman filter to estimate and filtering the unmeasured states of the studied system based on signals data of the inputs and the outputs that have been collected experimentally on site. The intelligent faults detection expert system is designed based on the interval type-2 fuzzy logic. The present work is achieved by an important task which is the prediction of the remaining time of the system under study to reach the danger and/or the failure stage based on the Auto-regressive Integrated Moving Average (ARIMA) model, where the objective within the industrial application is to set the maintenance schedules in precisely time. The obtained results prove the performance of the proposed faults diagnosis and detection approach which can be used in several heavy industrial systemsPeer ReviewedPostprint (published version
    • …
    corecore