121 research outputs found

    Chaotic information-geometric support vector machine and its application to fault diagnosis of hydraulic pumps

    Get PDF
    Fault diagnosis of rotating machineries is becoming important because of the complexity of modern industrial systems and the increasing demands for quality, cost efficiency, reliability, and safety. In this study, an information-geometric support vector machine used in conjunction with chaos theory (chaotic IG-SVM) is presented and applied to practical fault diagnosis of hydraulic pumps, which are critical components of aircraft. First, the phase-space reconstruction of chaos theory is used to determine the dimensions of input vectors for IG-SVM, which uses information geometry to modify SVM and improves performance in a data-dependent manner without prior knowledge or manual intervention. Chaotic IG-SVM is trained by using the dataset from the normal state without fault, and a residual error generator is then designed to detect failures based on the trained chaotic IG-SVM. Failures can be diagnosed by analyzing residual error. Chaotic IG-SVM can then be used for fault clustering by analyzing residual error. Finally, two case studies are presented, and the performance and effectiveness of the proposed method are validated

    Application of Information-Geometric Support Vector Machine on Fault Diagnosis of Hydraulic Pump

    Get PDF
    The growing demand for the safety and reliability in industries triggers the development of condition monitoring and fault diagnosis technologies. Hydraulic pump is the critical part of a hydraulic system. The diagnosis of hydraulic pump is very crucial for reliability. This paper presents a method based on information-geometric support vector machine (IG-SVM), which is employed for fault diagnosis of hydraulic pump. The IG-SVM, which uses information geometry to modify SVM, improves the performance in a data dependent way. To diagnose faults of hydraulic pump, a residual error generator is designed based on the IG-SVM. This residual error generator is firstly trained using data from normal state. Then, it can be used for fault clustering by analysis of the residual error. Its feasibility and efficiency has also been validated via a plunger pump test-bed

    A novel fault diagnosis for hydraulic pump based on EEMD-LTSA and PNN

    Get PDF
    The hydraulic pump is the core part of the hydraulic system and impacts the performance of hydraulic directly, thus the diagnosis for hydraulic is crucial. To realize the diagnosis for hydraulic pump, a method utilizing the vibration signal which varies with the performance is proposed. First, ensemble empirical mode decomposition (EEMD) is used to decompose the original signal into finite intrinsic mode functions (IMFs), and then the energy values are extracted to form the feature vector. Second, local tangent space alignment (LTSA), a manifold learning method, is applied in dimension reduction. Third, probabilistic neural network (PNN) is employed as the classifier to recognize the fault pattern. Finally, the effectiveness of the proposed method is validated by the experimental data with different faults

    Fault diagnosis for hydraulic pump based on EEMD-KPCA and LVQ

    Get PDF
    Hydraulic pump is regarded as the heart of hydraulic system. Achieving the real-time fault diagnosis of hydraulic pump is of great importance for the maintenance of the entire system. An accurate fault clustering solution with self-adaptive signal processing is needed for extracting performance degradation information hidden in the nonlinear and non-stationary signals of hydraulic pumps. Therefore, a fault diagnosis approach based on ensemble empirical mode decomposition (EEMD), kernel principal component analysis (KPCA), and learning vector quantization (LVQ) network is proposed in this study. First, EEMD is employed to acquire more significant intrinsic mode functions (IMFs), thus overcoming the drawback of empirical mode decomposition, and further extracting the energy values of each IMF to form the feature vector. Second, KPCA, a nonlinear dimension reduction method, is used to remove redundancies of the extracted feature vector for high accuracy of fault diagnosis. Finally, LVQ is employed to classify faults based on the reduced feature vector. The efficiency and accuracy of the proposed method is validated by a case study based on the vibration dataset of a plunger pump

    Flow regime identification for air valves failure evaluation in water pipelines using pressure data

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordAir valve failure can cause air accumulation and result in a loss of carrying capacity, pipe vibration and even in some situations a catastrophic failure of water transmission pipelines. Air is most likely to accumulate in downward sloping pipes, leading to flow regime transition in these pipes. The flow regime identification can be used for fault diagnosis of air valves, but has received little attention in previous research. This paper develops a flow regime identification method that is based on support vector machines (SVMs) to evaluate the operational state of air valves in freshwater/potable pipelines using pressure signals. The laboratory experiments are set up to collect pressure data with respect to the four common flow regimes: bubbly flow, plug flow, blow-back flow and stratified flow. Two SVMs are constructed to identify bubbly and plug flows and validated based on the collected pressure data. The results demonstrate that pressure signals can be used for identifying flow regimes that represent the operational state (functioning or malfunctioning) of air valves. Among several signal features, Power Spectral Density and Short-Zero Crossing Rate are found to be the best indictors to classify flow regimes by SVMs. The sampling rate and time of pressure signals have significant influence on the performance of SVM classification. With optimal SVM features and pressure sampling parameters the identification accuracies exceeded 93% in the test cases. The findings of this study show that the SVM flow regime identification is a promising methodology for fault diagnosis of air valve failure in water pipelines.National Natural Science Foundation of Chin

    Modeling and Optimal Operation of Hydraulic, Wind and Photovoltaic Power Generation Systems

    Get PDF
    The transition to 100% renewable energy in the future is one of the most important ways of achieving "carbon peaking and carbon neutrality" and of reducing the adverse effects of climate change. In this process, the safe, stable and economical operation of renewable energy generation systems, represented by hydro-, wind and solar power, is particularly important, and has naturally become a key concern for researchers and engineers. Therefore, this book focuses on the fundamental and applied research on the modeling, control, monitoring and diagnosis of renewable energy generation systems, especially hydropower energy systems, and aims to provide some theoretical reference for researchers, power generation departments or government agencies

    Smart Urban Water Networks

    Get PDF
    This book presents the paper form of the Special Issue (SI) on Smart Urban Water Networks. The number and topics of the papers in the SI confirm the growing interest of operators and researchers for the new paradigm of smart networks, as part of the more general smart city. The SI showed that digital information and communication technology (ICT), with the implementation of smart meters and other digital devices, can significantly improve the modelling and the management of urban water networks, contributing to a radical transformation of the traditional paradigm of water utilities. The paper collection in this SI includes different crucial topics such as the reliability, resilience, and performance of water networks, innovative demand management, and the novel challenge of real-time control and operation, along with their implications for cyber-security. The SI collected fourteen papers that provide a wide perspective of solutions, trends, and challenges in the contest of smart urban water networks. Some solutions have already been implemented in pilot sites (i.e., for water network partitioning, cyber-security, and water demand disaggregation and forecasting), while further investigations are required for other methods, e.g., the data-driven approaches for real time control. In all cases, a new deal between academia, industry, and governments must be embraced to start the new era of smart urban water systems

    Development of soft computing and applications in agricultural and biological engineering

    Get PDF
    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed

    A survey of AI in operations management from 2005 to 2009

    Get PDF
    Purpose: the use of AI for operations management, with its ability to evolve solutions, handle uncertainty and perform optimisation continues to be a major field of research. The growing body of publications over the last two decades means that it can be difficult to keep track of what has been done previously, what has worked, and what really needs to be addressed. Hence this paper presents a survey of the use of AI in operations management aimed at presenting the key research themes, trends and directions of research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the ten-year period 1995-2004. Like the previous survey, it uses Elsevier’s Science Direct database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus, the application categories adopted are: design; scheduling; process planning and control; and quality, maintenance and fault diagnosis. Research on utilising neural networks, case-based reasoning (CBR), fuzzy logic (FL), knowledge-Based systems (KBS), data mining, and hybrid AI in the four application areas are identified. Findings: the survey categorises over 1,400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: the trends for design and scheduling show a dramatic increase in the use of genetic algorithms since 2003 that reflect recognition of their success in these areas; there is a significant decline in research on use of KBS, reflecting their transition into practice; there is an increasing trend in the use of FL in quality, maintenance and fault diagnosis; and there are surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the 10 year period 1995 to 2004 (Kobbacy et al. 2007). Like the previous survey, it uses the Elsevier’s ScienceDirect database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus the application categories adopted are: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Research on utilising neural networks, case based reasoning, fuzzy logic, knowledge based systems, data mining, and hybrid AI in the four application areas are identified. Findings: The survey categorises over 1400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: (a) The trends for Design and Scheduling show a dramatic increase in the use of GAs since 2003-04 that reflect recognition of their success in these areas, (b) A significant decline in research on use of KBS, reflecting their transition into practice, (c) an increasing trend in the use of fuzzy logic in Quality, Maintenance and Fault Diagnosis, (d) surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Originality/value: This is the largest and most comprehensive study to classify research on the use of AI in operations management to date. The survey and trends identified provide a useful reference point and directions for future research
    • …
    corecore