1,925 research outputs found

    Fault detection and isolation using viability theory and interval observers

    Get PDF
    This paper proposes the use of interval observers and viability theory in fault detection and isolation (FDI). Viability theory develops mathematical and algorithmic methods for investigating the viability constraints characterisation of dynamic evolutions of complex systems under uncertainty. These methods can be used for checking the consistency between observed and predicted behaviour by using simple sets that approximate the exact set of possible behaviour (in the parameter or state space). In this paper, FDI is based on checking for an inconsistency between the measured and predicted behaviours using viability theory concepts and sets. Finally, an example is provided in order to show the usefulness of the proposed approachPeer ReviewedPostprint (author's final draft

    Active actuator fault-tolerant control of a wind turbine benchmark model

    Get PDF
    This paper describes the design of an active fault-tolerant control scheme that is applied to the actuator of a wind turbine benchmark. The methodology is based on adaptive filters obtained via the nonlinear geometric approach, which allows to obtain interesting decoupling property with respect to uncertainty affecting the wind turbine system. The controller accommodation scheme exploits the on-line estimate of the actuator fault signal generated by the adaptive filters. The nonlinearity of the wind turbine model is described by the mapping to the power conversion ratio from tip-speed ratio and blade pitch angles. This mapping represents the aerodynamic uncertainty, and usually is not known in analytical form, but in general represented by approximated two-dimensional maps (i.e. look-up tables). Therefore, this paper suggests a scheme to estimate this power conversion ratio in an analytical form by means of a two-dimensional polynomial, which is subsequently used for designing the active fault-tolerant control scheme. The wind turbine power generating unit of a grid is considered as a benchmark to show the design procedure, including the aspects of the nonlinear disturbance decoupling method, as well as the viability of the proposed approach. Extensive simulations of the benchmark process are practical tools for assessing experimentally the features of the developed actuator fault-tolerant control scheme, in the presence of modelling and measurement errors. Comparisons with different fault-tolerant schemes serve to highlight the advantages and drawbacks of the proposed methodology

    Articles indexats publicats per investigadors del Campus de Terrassa: 2015

    Get PDF
    Aquest informe recull els 284 treballs publicats per 218 investigadors/es del Campus de Terrassa en revistes indexades al Journal Citation Report durant el 2015Postprint (published version

    Fault Diagnosis of a Variable-Speed Wind Turbine via Support Vector Machines

    Get PDF
    In recent years, wind energy is considered as the most practical substitute energy to replace the fossil fuels. Wind turbines are massive and installed in locations, where a non-planned maintenance is very costly. Therefore, a fault-tolerant control system that is able to maintain the wind turbine connected after the occurrence of certain faults can avoid major economic losses. To keep the wind turbine operational or at least safe, in severe cases, a reliable fault diagnosis methodology has to be exploited. It must detect, in the required time, any deviation of the system behaviour from its ordinary case, identify the location and type of the fault and reconfigure the control system to accommodate the so-called discrepancy. To achieve the above goals, a vast number of methods have been suggested by many researchers all around the world. In this thesis, the promising classification framework of the Support Vector Machines is applied to fault detection for variable speed turbines, highlighting its features. In this regard, different fault scenarios are imposed on a benchmark model of a horizontal-axis wind turbine to check the functionality of the mentioned fault detector and the control reconfiguration module

    Articles indexats publicats per investigadors del Campus de Terrassa: 2017

    Get PDF
    Aquest informe recull els 241 treballs publicats per 222 investigadors/es del Campus de Terrassa en revistes indexades al Journal Citation Report durant el 2017Postprint (published version

    Real-time fault identification for developmental turbine engine testing

    Get PDF
    Hundreds of individual sensors produce an enormous amount of data during developmental turbine engine testing. The challenge is to ensure the validity of the data and to identify data and engine anomalies in a timely manner. An automated data validation, engine condition monitoring, and fault identification process that emulates typical engineering techniques has been developed for developmental engine testing.An automated data validation and fault identification approach employing enginecycle-matching principles is described. Engine cycle-matching is automated by using an adaptive nonlinear component-level computer model capable of simulating both steady state and transient engine operation. Automated steady-state, transient, and real-time model calibration processes are also described. The model enables automation of traditional data validation, engine condition monitoring, and fault identification procedures. A distributed parallel computing approach enables the entire process to operate in real-time.The result is a capability to detect data and engine anomalies in real-time during developmental engine testing. The approach is shown to be successful in detecting and identifying sensor anomalies as they occur and distinguishing these anomalies from variations in component and overall engine aerothermodynamic performance. The component-level model-based engine performance and fault identification technique of the present research is capable of: identifying measurement errors on the order of 0.5 percent (e.g., sensor bias, drift,level shift, noise, or poor response) in facility fuel flow, airflow, and thrust measurements; identifying measurement errors in engine aerothermodynamic measurements (rotorspeeds, gas path pressures and temperatures); identifying measurement errors in engine control sensors (e.g., leaking/biased pressure sensor, slowly responding pressure measurement) and variable geometry rigging (e.g., misset guide vanes or nozzle area) that would invalidate a test or series of tests; identifying abrupt faults (e.g., faults due to domestic object damage, foreign object damage, and control anomalies); identifying slow faults (e.g., component or overall engine degradation, and sensor drift). Specifically, the technique is capable of identifying small changes in compressor (or fan) performance on the order of 0.5 percent; and being easily extended to diagnose secondary failure modes and to verify any modeling assumptions that may arise for developmental engine tests (e.g., increase in turbine flow capacity, inaccurate measurement of facility bleed flows, horsepower extraction, etc.).The component-level model-based engine performance and fault identification method developed in the present work brings together features which individually and collectively advance the state-of-the-art. These features are separated into three categories: advancements to effectively quantify off-nominal behavior, advancements to provide a fault detection capability that is practical from the viewpoint of the analysis,implementation, tuning, and design, and advancements to provide a real-time fault detection capability that is reliable and efficient

    Model-based Fault Diagnosis and Fault Accommodation for Space Missions : Application to the Rendezvous Phase of the MSR Mission

    Get PDF
    The work addressed in this thesis draws expertise from actions undertaken between the EuropeanSpace Agency (ESA), the industry Thales Alenia Space (TAS) and the IMS laboratory (laboratoirede l’Intégration du Matériau au Système) which develop new generations of integrated Guidance, Navigationand Control (GNC) units with fault detection and tolerance capabilities. The reference mission isthe ESA’s Mars Sample Return (MSR) mission. The presented work focuses on the terminal rendezvoussequence of the MSR mission which corresponds to the last few hundred meters until the capture. Thechaser vehicle is the MSR Orbiter, while the passive target is a diameter spherical container. The objectiveat control level is a capture achievement with an accuracy better than a few centimeter. The research workaddressed in this thesis is concerned by the development of model-based Fault Detection and Isolation(FDI) and Fault Tolerant Control (FTC) approaches that could significantly increase the operational andfunctional autonomy of the chaser during rendezvous, and more generally, of spacecraft involved in deepspace missions. Since redundancy exist in the sensors and since the reaction wheels are not used duringthe rendezvous phase, the work presented in this thesis focuses only on the thruster-based propulsionsystem. The investigated faults have been defined in accordance with ESA and TAS requirements andfollowing their experiences. The presented FDI/FTC approaches relies on hardware redundancy in sensors,control redirection and control re-allocation methods and a hierarchical FDI including signal-basedapproaches at sensor level, model-based approaches for thruster fault detection/isolation and trajectorysafety monitoring. Carefully selected performance and reliability indices together with Monte Carlo simulationcampaigns, using a high-fidelity industrial simulator, demonstrate the viability of the proposedapproaches.Les travaux de recherche traités dans cette thèse s’appuient sur l’expertise des actionsmenées entre l’Agence spatiale européenne (ESA), l’industrie Thales Alenia Space (TAS) et le laboratoirede l’Intégration du Matériau au Système (IMS) qui développent de nouvelles générations d’unités intégréesde guidage, navigation et pilotage (GNC) avec une fonction de détection des défauts et de tolérance desdéfauts. La mission de référence retenue dans cette thèse est la mission de retour d’échantillons martiens(Mars Sample Return, MSR) de l’ESA. Ce travail se concentre sur la séquence terminale du rendez-vous dela mission MSR qui correspond aux dernières centaines de mètres jusqu’à la capture. Le véhicule chasseurest l’orbiteur MSR (chasseur), alors que la cible passive est un conteneur sphérique. L’objectif au niveaude contrôle est de réaliser la capture avec une précision inférieure à quelques centimètres. Les travaux derecherche traités dans cette thèse s’intéressent au développement des approches sur base de modèle de détectionet d’isolation des défauts (FDI) et de commande tolérante aux défaillances (FTC), qui pourraientaugmenter d’une manière significative l’autonomie opérationnelle et fonctionnelle du chasseur pendant lerendez-vous et, d’une manière plus générale, d’un vaisseau spatial impliqué dans des missions située dansl’espace lointain. Dès lors que la redondance existe dans les capteurs et que les roues de réaction ne sontpas utilisées durant la phase de rendez-vous, le travail présenté dans cette thèse est orienté seulementvers les systèmes de propulsion par tuyères. Les défaillances examinées ont été définies conformément auxexigences de l’ESA et de TAS et suivant leurs expériences. Les approches FDI/FTC présentées s’appuientsur la redondance de capteurs, la redirection de contrôle et sur les méthodes de réallocation de contrôle,ainsi que le FDI hiérarchique, y compris les approches à base de signaux au niveau de capteurs, les approchesà base de modèle de détection/localisation de défauts de propulseur et la surveillance de sécuritéde trajectoire. Utilisant un simulateur industriel de haute-fidélité, les indices de performance et de fiabilitéFDI, qui ont été soigneusement choisis accompagnés des campagnes de simulation de robustesse/sensibilitéMonte Carlo, démontrent la viabilité des approches proposées
    • …
    corecore