59 research outputs found

    Fault attacks on RSA and elliptic curve cryptosystems

    Full text link
    This thesis answered how a fault attack targeting software used to program EEPROM can threaten hardware devices, for instance IoT devices. The successful fault attacks proposed in this thesis will certainly warn designers of hardware devices of the security risks their devices may face on the programming leve

    Efficient and Secure ECDSA Algorithm and its Applications: A Survey

    Get PDF
    Public-key cryptography algorithms, especially elliptic curve cryptography (ECC)and elliptic curve digital signature algorithm (ECDSA) have been attracting attention frommany researchers in different institutions because these algorithms provide security andhigh performance when being used in many areas such as electronic-healthcare, electronicbanking,electronic-commerce, electronic-vehicular, and electronic-governance. These algorithmsheighten security against various attacks and the same time improve performanceto obtain efficiencies (time, memory, reduced computation complexity, and energy saving)in an environment of constrained source and large systems. This paper presents detailedand a comprehensive survey of an update of the ECDSA algorithm in terms of performance,security, and applications

    Highly secure cryptographic computations against side-channel attacks

    Get PDF
    Side channel attacks (SCAs) have been considered as great threats to modern cryptosystems, including RSA and elliptic curve public key cryptosystems. This is because the main computations involved in these systems, as the Modular Exponentiation (ME) in RSA and scalar multiplication (SM) in elliptic curve system, are potentially vulnerable to SCAs. Montgomery Powering Ladder (MPL) has been shown to be a good choice for ME and SM with counter-measures against certain side-channel attacks. However, recent research shows that MPL is still vulnerable to some advanced attacks [21, 30 and 34]. In this thesis, an improved sequence masking technique is proposed to enhance the MPL\u27s resistance towards Differential Power Analysis (DPA). Based on the new technique, a modified MPL with countermeasure in both data and computation sequence is developed and presented. Two efficient hardware architectures for original MPL algorithm are also presented by using binary and radix-4 representations, respectively

    On Fault-based Attacks and Countermeasures for Elliptic Curve Cryptosystems

    Get PDF
    For some applications, elliptic curve cryptography (ECC) is an attractive choice because it achieves the same level of security with a much smaller key size in comparison with other schemes such as those that are based on integer factorization or discrete logarithm. Unfortunately, cryptosystems including those based on elliptic curves have been subject to attacks. For example, fault-based attacks have been shown to be a real threat in today’s cryptographic implementations. In this thesis, we consider fault-based attacks and countermeasures for ECC. We propose a new fault-based attack against the Montgomery ladder elliptic curve scalar multiplication (ECSM) algorithm. For security reasons, especially to provide resistance against fault-based attacks, it is very important to verify the correctness of computations in ECC applications. We deal with protections to fault attacks against ECSM at two levels: module and algorithm. For protections at the module level, where the underlying scalar multiplication algorithm is not changed, a number of schemes and hardware structures are presented based on re-computation or parallel computation. It is shown that these structures can be used for detecting errors with a very high probability during the computation of ECSM. For protections at the algorithm level, we use the concepts of point verification (PV) and coherency check (CC). We investigate the error detection coverage of PV and CC for the Montgomery ladder ECSM algorithm. Additionally, we propose two algorithms based on the double-and-add-always method that are resistant to the safe error (SE) attack. We demonstrate that one of these algorithms also resists the sign change fault (SCF) attack

    The Fault Attack Jungle - A Classification Model to Guide You

    Full text link

    Sequential Circuit Design for Embedded Cryptographic Applications Resilient to Adversarial Faults

    Get PDF
    In the relatively young field of fault-tolerant cryptography, the main research effort has focused exclusively on the protection of the data path of cryptographic circuits. To date, however, we have not found any work that aims at protecting the control logic of these circuits against fault attacks, which thus remains the proverbial Achilles’ heel. Motivated by a hypothetical yet realistic fault analysis attack that, in principle, could be mounted against any modular exponentiation engine, even one with appropriate data path protection, we set out to close this remaining gap. In this paper, we present guidelines for the design of multifault-resilient sequential control logic based on standard Error-Detecting Codes (EDCs) with large minimum distance. We introduce a metric that measures the effectiveness of the error detection technique in terms of the effort the attacker has to make in relation to the area overhead spent in implementing the EDC. Our comparison shows that the proposed EDC-based technique provides superior performance when compared against regular N-modular redundancy techniques. Furthermore, our technique scales well and does not affect the critical path delay

    Survey for Performance & Security Problems of Passive Side-channel Attacks Countermeasures in ECC

    Get PDF
    The main objective of the Internet of Things is to interconnect everything around us to obtain information which was unavailable to us before, thus enabling us to make better decisions. This interconnection of things involves security issues for any Internet of Things key technology. Here we focus on elliptic curve cryptography (ECC) for embedded devices, which offers a high degree of security, compared to other encryption mechanisms. However, ECC also has security issues, such as Side-Channel Attacks (SCA), which are a growing threat in the implementation of cryptographic devices. This paper analyze the state-of-the-art of several proposals of algorithmic countermeasures to prevent passive SCA on ECC defined over prime fields. This work evaluates the trade-offs between security and the performance of side-channel attack countermeasures for scalar multiplication algorithms without pre-computation, i.e. for variable base point. Although a number of results are required to study the state-of-the-art of side-channel attack in elliptic curve cryptosystems, the interest of this work is to present explicit solutions that may be used for the future implementation of security mechanisms suitable for embedded devices applied to Internet of Things. In addition security problems for the countermeasures are also analyzed

    Sécurité physique de la cryptographie sur courbes elliptiques

    Get PDF
    Elliptic Curve Cryptography (ECC) has gained much importance in smart cards because of its higher speed and lower memory needs compared with other asymmetric cryptosystems such as RSA. ECC is believed to be unbreakable in the black box model, where the cryptanalyst has access to inputs and outputs only. However, it is not enough if the cryptosystem is embedded on a device that is physically accessible to potential attackers. In addition to inputs and outputs, the attacker can study the physical behaviour of the device. This new kind of cryptanalysis is called Physical Cryptanalysis. This thesis focuses on physical cryptanalysis of ECC. The first part gives the background on ECC. From the lowest to the highest level, ECC involves a hierarchy of tools: Finite Field Arithmetic, Elliptic Curve Arithmetic, Elliptic Curve Scalar Multiplication and Cryptographie Protocol. The second part exhibits a state-of-the-art of the different physical attacks and countermeasures on ECC.For each attack, the context on which it can be applied is given while, for each countermeasure, we estimate the lime and memory cost. We propose new attacks and new countermeasures. We then give a clear synthesis of the attacks depending on the context. This is useful during the task of selecting the countermeasures. Finally, we give a clear synthesis of the efficiency of each countermeasure against the attacks.La Cryptographie sur les Courbes Elliptiques (abréviée ECC de l'anglais Elliptic Curve Cryptography) est devenue très importante dans les cartes à puces car elle présente de meilleures performances en temps et en mémoire comparée à d'autres cryptosystèmes asymétriques comme RSA. ECC est présumé incassable dans le modèle dit « Boite Noire », où le cryptanalyste a uniquement accès aux entrées et aux sorties. Cependant, ce n'est pas suffisant si le cryptosystème est embarqué dans un appareil qui est physiquement accessible à de potentiels attaquants. En plus des entrés et des sorties, l'attaquant peut étudier le comportement physique de l'appareil. Ce nouveau type de cryptanalyse est appelé cryptanalyse physique. Cette thèse porte sur les attaques physiques sur ECC. La première partie fournit les pré-requis sur ECC. Du niveau le plus bas au plus élevé, ECC nécessite les outils suivants : l'arithmétique sur les corps finis, l'arithmétique sur courbes elliptiques, la multiplication scalaire sur courbes elliptiques et enfin les protocoles cryptographiques. La deuxième partie expose un état de l'art des différentes attaques physiques et contremesures sur ECC. Pour chaque attaque, nous donnons le contexte dans lequel elle est applicable. Pour chaque contremesure, nous estimons son coût en temps et en mémoire. Nous proposons de nouvelles attaques et de nouvelles contremesures. Ensuite, nous donnons une synthèse claire des attaques suivant le contexte. Cette synthèse est utile pendant la tâche du choix des contremesures. Enfin, une synthèse claire de l'efficacité de chaque contremesure sur les attaques est donnée
    • …
    corecore