584 research outputs found

    Performability of Integrated Networked Control Systems

    Get PDF
    A direct sensor to actuator communication model (S2A) for unmodified Ethernet-based Networked Control Systems (NCSs) is presented in this research. A comparison is made between the S2A model and a previously introduced model including an in-loop controller node. OMNET simulations showed the success of the S2A model in meeting system delay with strict zero packet loss (with no over-delayed packets) requirements. The S2A model also showed a reduction in the end-to-end delay of control packets from sensor nodes to actuator nodes in both Fast and Gigabit switched Ethernet-Based. Another major improvement for the S2A model is accommodating the increase in the amount of additional load compared to the in-loop model. Two different controller-level fault-tolerant models for Ethernet-based Networked Control Systems (NCSs) are also presented in this research. These models are studied using unmodified Fast and Gigabit Ethernet. The first is an in-loop fault-tolerant controller model while the second is a fault-tolerant direct Sensor to Actuator (S2A) model. Both models were shown via OMNeT++ simulations to succeed in meeting system end-to-end delay with strict zero packet loss (with no over-delayed packets) requirements. Although, it was shown that the S2A model has a lower end-to-end delay than the in-loop controller model, the fault-tolerant in-loop model performs better than the fault-tolerant S2A model in terms of less total end-to-end delay in the fault-free situation. While, on the other hand, in the scenario with the failed controller(s), the S2A model was shown to have less total end-to-end delay. Performability analysis between the two fault-tolerant models is studied and compared using fast Ethernet links relating controller failure with reward, depending on the system state. Meeting control system\u27s deadline is essential in Networked Control Systems and failing to meet this deadline represents a failure of the system. Therefore, the reward is considered to be how far is the total end-to-end delay in each state in each model from the system deadline. A case study is presented that simultaneously investigates the failure on the controller level with reward

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Efficient redundancy in wired and wireless S2A architectures for NCS

    Get PDF
    This thesis focuses on the integration of wired and wireless nodes running on top of Gigabit Ethernet and WiFi respectively in Networked Control Systems. Such a networked control system investigated in this work consists of two wireless sensors, two wireless actuators, 14 wired sensors, two wired actuators and one wired supervisor. The architecture is based on Sensor-To-Actuator model. It is revealed through OMNeT++ simulations that the wired and wireless packet end-to-end delays in the developed model satisfy system requirements with no packet loss. Moreover, wired, wireless and mixed interferences are studied and quantified. The amount of interference that the model can withstand is determined. All results are subjected to a 95% confidence analysis. Additionally, the thesis focuses on reliability in the design of networked control systems that is becoming greatly important. Fault-tolerance is often used to increase system reliability. In this work, Triple Modular Redundancy (TMR) and Parallel Redundancy Protocol (PRP) are both applied to a Sensor-to-Actuator architecture with 16 sensors, four Actuators and one Supervisor. Two of the 16 sensors as well as two of the four actuators are wireless while the rest of the nodes are wired. It is first shown that this NCS succeeds in meeting all control system requirements (zero packet loss and bounded end-to-end delay). Reliability models are then developed to help designers choose the appropriate mix of fault-tolerant techniques in order to maximize lifetime while at the same time minimizing the extra cost due to the added redundancy

    Fault tolerance in WBAN applications

    Get PDF
    One of the most promising applications of IoT is Wireless Body Area Net-works (WBANs) in medical applications. They allow physiological signals monitoring of patients without the presence of nearby medical personnel. Furthermore, WBANs enable feedback action to be taken either periodically or event-based following the Networked Control Systems (NCSs) techniques. This thesis first presents the architecture of a fault tolerant WBAN. Sensors data are sent over two redundant paths to be processed, analyzed and monitored. The two main communication protocols utilized in this system are Low power Wi-Fi (IEEE 802.11n) and Long Term Evolution (LTE). Riverbed Modeler is used to study the system’s behavior. Simulation results are collected with 95% confidence analysis on 33 runs on different initial seeds. It is proven that the system is fully operational. It is then shown that the system can withstand interference and system’s performance is quantified. Results indicate that the system succeeds in meeting all required control criteria in the presence of two different interference models. The second contribution of this thesis is the design of an FPGA-based smart band for health monitoring applications in WBANs. This FPGA-based smart band has a softcore processor and its allocated SRAM block as well as auxiliary modules. A novel scheme for full initial configuration and Dynamic Partial Reconfiguration through the WLAN network is integrated into this design. Fault tolerance techniques are used to mitigate transient faults such as Single Event Upsets (SEUs) and Multiple Event Upsets (MEUs). The system is studied in a normal environment as well as in a harsh environment. System availability is then obtained using Markov Models and a case study is presented

    Networked Control System: Overview and Research Trends

    Get PDF
    Abstract-Networked control systems (NCSs) have been one of the main research focuses in academia as well as in industry for many decades and have become a multidisciplinary area. With these growing research trends, it is important to consolidate the latest knowledge and information to keep up with the research needs. In this paper, the NCS and its different forms are introduced and discussed. The beginning of this paper discusses the history and evolution of NCSs. The next part of this paper focuses on different fields and research arenas such as networking technology, network delay, network resource allocation, scheduling, network security in real-time NCSs, integration of components on a network, fault tolerance, etc. A brief literature survey and possible future direction concerning each topic is included

    Supervision of Nonlinear Networked Control Systems Under Network Constraints

    Get PDF
    International audienceThe remote supervision for a class of nonlinear systems in the presence of additive disturbances and measurement noises is considered in this paper. The communication network may introduce time delays while exchanging data among sites connected to the network medium (i.e., the data acquisition site and the remote plant site). Two different approaches are presented in this paper. The first one uses a conventional estimator-based predictor when the uncertainties are supposed to be known. In the case of unknown but bounded uncertainties by known bounds, an interval estimation-based predictor evaluating the set of admissible values for the state is investigated. The state prediction techniques are used to compensate the effect of network-induced delays. Simulation results are introduced to illustrate the efficiency of the proposed techniques

    Active Fault-Tolerance in Wireless Networked Control Systems

    Get PDF
    In a Wireless Networked Control System (WNCS), several nodes or components of the system may communicate over the common network that connects them together. Thus, there may be communication taking place between the sensors and the controller nodes, among the controllers themselves, among the sensors themselves, among the actuator themselves, and between the controller and the actuator nodes. The purpose of this communication is to improve the performance of the control system. The performance may be a measurable quantity defined in terms of a performance criterion, as in the case of optimal control or estimation, or it may be a qualitative measure described as a desired behaviour. Each node of the WNCS may act as a decision maker, making control as well as communication decisions. The presence of a network brings in constraints in the design of the control system, as information between the various decision makers must be exchanged according to the rules and dynamics of the network. Our goal is to quantify some of these constraints, and design the control system together with the communication system so as both do their best given the constraints. This work in no way attempts to suggest the best way to design a communication network that suits the needs of a particular control system, but some of the results obtained here may be used in conjunction with other results in forming an understanding as to how to proceed in the design of such systems in the future. The work proposes a novel real-time communication protocol based on the Time Division Multiple Access (TDMA) strategy, which has built-in tolerance against the network-induced effects like lost packets, assuring a highly deterministic and reliable behaviour of the overall networked control system, thus allowing the use of classical control design methods with WNCS. Determinism in the transmission times, for sending and for receiving, is assured by a communication schedule that is dynamically updated based on the conditions of the network and the propagation environment. An advanced experimentation platform has been developed, called WiNC, which demonstrates the efficiency of the protocol with two well-known laboratory benchmarks that have very different dynamics, namely the three-tank system and the inverted pendulum system. Wireless nodes belonging to both systems are coordinated and synchronized by a master node, namely the controller node. The WiNC platform uses only open source software and general-purpose (commercial, off-the shelf) hardware, thus making it with a minimal investment (low cost) a flexible and easily extendable research platform for WNCS. And considering the general trend towards the adoption of Linux as a real-time operating system for embedded system in automation, the developed concepts and algorithms can be ported with minimum effort to the industrial embedded devices which already run Linux
    • …
    corecore