2,036 research outputs found

    A fault detection and isolation system for cooperative manipulators

    Get PDF
    The problem of fault detection and isolation (FDI) in cooperative manipulators is addressed in this paper. Four FDI procedures are developed to deal with free-swinging joint faults, locked joint faults, incorrectly measured joint position, and incorrectly measured joint velocity. Free-swinging and locked joint faults are isolated via neural networks. For each arm, a Multilayer Perceptron (MLP) is used to reproduce the dynamics of the fault-free robot. The outputs of each MLP are compared to the actual joint velocities in order to generate a residual vector which is then classified by an RBF network. The remaining faults are isolated based on the kinematic constraints imposed on the cooperative system. Results obtained via simulations and via an actual cooperative manipulator robot are presented

    Fault tolerance force for redundant manipulators

    Full text link
    Fault tolerant manipulators maintain their trajectory even if their joint/s fails. Assuming that the manipulator is fault tolerant on its trajectory, fault tolerant compliance manipulators provide required force at their end-effector even when a joint fails. To achieve this, the contributions of the faulty joints for the force of the end-effector are required to be mapped into the proper compensating joint torques of the healthy joints to maintain the force. This paper addresses the optimal mapping to minimize the force jump due to a fault, which is the maximum effort to maintain the force when a fault occurs. The paper studies the locked joint fault/s of the redundant manipulators and it relates the force jump at the end-effector to the faults within the joints. Adding on a previous study to maintain the trajectory, in here the objective is to providing fault tolerant force at the end-effector of the redundant manipulators. This optimal mapping with minimum force jump is presented using matrix perturbation model. And the force jump is calculated through this model for single and multiple joints fault. The proposed optimal mapping is used in different fault scenarios for a 5-DOF manipulator; also it is deployed to compensate the force at the end-effector for the 5-DOF manipulator through simulation study and the results are presented

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 1: Executive Summary

    Get PDF
    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions are explored. The specific tasks which will be required by future space projects are identified. ARAMIS options which are candidates for those space project tasks and the relative merits of these options are defined and evaluated. Promising applications of ARAMIS and specific areas for further research are identified. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks

    On the effort of task completion for partially-failed manipulators

    Full text link
    Adding to a previous work of the authors for task completion for partially failed manipulator, other aspects of the effort are discussed. The paper aims to investigate on the strategies of maximum effort for maintaining the availability of partially failed manipulators. The failures are assumed as the joint lock failures of the manipulators. The main objective is to facilitate the existing manipulators to continue their tasks even if a non catastrophic fault occurs into their joints. The tasks includes motion tasks and force tasks. For each group of tasks a constrained optimality problem is introduced. Then in a case study a required force profile on a desired trajectory using a 3DOF planar manipulator is indicated. Through this study the joint angles and joint torques for a healthy manipulator and a faulty manipulator are shown. It is illustrated that a failure in the second joint is tolerated on the trajectory of end-effector

    COOPERATIVE MANIPULATORS

    Get PDF
    The objective of this project is to achieve the cooperation between two mobile robots. These two robot will be programmed to lift a certain object or load and carrying the load simultaneously. A general programming controller will be use in this project to achieve the main objective to study how the mobile robot work

    Man-machine cooperation in advanced teleoperation

    Get PDF
    Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    The NASA/OAST telerobot testbed architecture

    Get PDF
    Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented
    • …
    corecore