4,073 research outputs found

    Advanced flight control system study

    Get PDF
    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed

    Robust de-centralized control and estimation for inter-connected systems

    Get PDF
    The thesis is concerned with the theoretical development of the control of inter-connected systems to achieve the whole overall stability and specific performance. A special included feature is the Fault-Tolerant Control (FTC) problem for the inter-connected system in terms of local subsystem actuator fault estimation. Hence, the thesis describes the main FTC challenges of distributed control of uncertain non-linear inter-connected systems. The basic principle adopted throughout the work is that the controller has two components, one involving the nominal control with unmatched components including uncertainties and disturbances. The second controller dealing with matched components including uncertainties and actuator faults.The main contributions of the thesis are summarised as follows:- The non-linear inter-connected systems are controlled by two controllers. The linear part via a linear matrix inequality (LMI) technique and the discontinuous part by using Integral Sliding Mode Control (ISMC) based on state feedback control.- The development of a new observer-based state estimate control strategy for non-linear inter-connected systems. The technique is applied either to every individual subsystem or to the whole as one shot system.- A new proposal of Adaptive Output Integral Sliding Mode Control (AOISMC) based only on output information plus static output feedback control is designed via an LMI formulation to control non-linear inter-connected systems. The new method is verified by application to a mathematical example representing an electrical power generator.- The development of a new method to design a dynamic control based on an LMI framework with Output Integral Sliding Mode Control (OISMC) to improve the stability and performance.- Using the above framework, making use of LMI tools and ISMC, a method of on-line actuator fault estimation has been proposed using the Proportional Multiple Integral Observer (PMIO) for fault estimation applicable to non-linear inter-connected systems

    Integrated control and health management. Orbit transfer rocket engine technology program

    Get PDF
    To insure controllability of the baseline design for a 7500 pound thrust, 10:1 throttleable, dual expanded cycle, Hydrogen-Oxygen, orbit transfer rocket engine, an Integrated Controls and Health Monitoring concept was developed. This included: (1) Dynamic engine simulations using a TUTSIM derived computer code; (2) analysis of various control methods; (3) Failure Modes Analysis to identify critical sensors; (4) Survey of applicable sensors technology; and, (5) Study of Health Monitoring philosophies. The engine design was found to be controllable over the full throttling range by using 13 valves, including an oxygen turbine bypass valve to control mixture ratio, and a hydrogen turbine bypass valve, used in conjunction with the oxygen bypass to control thrust. Classic feedback control methods are proposed along with specific requirements for valves, sensors, and the controller. Expanding on the control system, a Health Monitoring system is proposed including suggested computing methods and the following recommended sensors: (1) Fiber optic and silicon bearing deflectometers; (2) Capacitive shaft displacement sensors; and (3) Hot spot thermocouple arrays. Further work is needed to refine and verify the dynamic simulations and control algorithms, to advance sensor capabilities, and to develop the Health Monitoring computational methods

    Self-organising satellite constellation in geostationary Earth orbit

    Get PDF
    This paper presents a novel solution to the problem of autonomous task allocation for a self-organizing satellite constellation in Earth orbit. The method allows satellites to cluster themselves above targets on the Earth’s surface. This is achieved using Coupled Selection Equations (CSE) - a dynamical systems approach to combinatorial optimization whose solution tends asymptotically towards a Boolean matrix describing the pairings of satellites and targets which solves the relevant assignment problems. Satellite manoeuvers are actuated by an Artificial Potential Field method which incorporates the CSE output. Three demonstrations of the method’s efficacy are given - first with equal numbers of satellites and targets, then with a satellite surplus, including agent failures, and finally with a fractionated constellation. Finally, a large constellation of 100 satellites is simulated to demonstrate the utility of the method in future swarm mission scenarios. The method provides efficient solutions with quick convergence, is robust to satellite failures, and hence appears suitable for distributed, on-board autonomy
    corecore