8,359 research outputs found

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    A QoS-Aware Routing Protocol for Real-time Applications in Wireless Sensor Networks

    Get PDF
    The paper presents a quality of service aware routing protocol which provides low latency for high priority packets. Packets are differentiated based on their priority by applying queuing theory. Low priority packets are transferred through less energy paths. The sensor nodes interact with the pivot nodes which in turn communicate with the sink node. This protocol can be applied in monitoring context aware physical environments for critical applications.Comment: 10 pages. arXiv admin note: text overlap with arXiv:1001.5339 by other author

    Network Survivability Performance Evaluation in Underwater Surveillance System Using Markov Model

    Get PDF
    Underwater Wireless Sensor Network (UWSN) is a useful technology that can be used in Underwater Surveillance System (USS). USSs are mostly used in military purposes for detecting underwater military activities. One of the most important issues in USS is mission reliability or survivability. Due to harsh underwater environment and mission critical nature of military applications, it is important to measure survivability of USS. Underwater sensor node failures can be detrimental for USS. To improve survivability in USS, we propose a fault-tolerant underwater sensor node model. To the best of our knowledge, this is the first fault-tolerant underwater sensor node model in USS that evaluates survivability of an USS.  We develop Markov models for characterizing USS survivability and MTTF (Mean Time to Failure) to facilitate USS. Performance evaluation results show the effectiveness of proposed model

    On cost-effective reuse of components in the design of complex reconfigurable systems

    Get PDF
    Design strategies that benefit from the reuse of system components can reduce costs while maintaining or increasing dependability—we use the term dependability to tie together reliability and availability. D3H2 (aDaptive Dependable Design for systems with Homogeneous and Heterogeneous redundancies) is a methodology that supports the design of complex systems with a focus on reconfiguration and component reuse. D3H2 systematizes the identification of heterogeneous redundancies and optimizes the design of fault detection and reconfiguration mechanisms, by enabling the analysis of design alternatives with respect to dependability and cost. In this paper, we extend D3H2 for application to repairable systems. The method is extended with analysis capabilities allowing dependability assessment of complex reconfigurable systems. Analysed scenarios include time-dependencies between failure events and the corresponding reconfiguration actions. We demonstrate how D3H2 can support decisions about fault detection and reconfiguration that seek to improve dependability while reducing costs via application to a realistic railway case study

    Smartening the Environment using Wireless Sensor Networks in a Developing Country

    Get PDF
    The miniaturization process of various sensing devices has become a reality by enormous research and advancements accomplished in Micro Electro-Mechanical Systems (MEMS) and Very Large Scale Integration (VLSI) lithography. Regardless of such extensive efforts in optimizing the hardware, algorithm, and protocols for networking, there still remains a lot of scope to explore how these innovations can all be tied together to design Wireless Sensor Networks (WSN) for smartening the surrounding environment for some practical purposes. In this paper we explore the prospects of wireless sensor networks and propose a design level framework for developing a smart environment using WSNs, which could be beneficial for a developing country like Bangladesh. In connection to this, we also discuss the major aspects of wireless sensor networks.Comment: 5 page
    corecore