632 research outputs found

    Voltage Profile and Power Quality Improvement in Photovoltaic Farms Integrated Medium Voltage Grid using Dynamic Voltage Restorer

    Get PDF
    © 2020 The Author(s). This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0/).In this paper, we have presented a simulation study to analyze the power quality of three phases medium voltage grid connected with distribution generation (DG) such as photovoltaic (PV) farms and its control schemes. The system uses two-stage energy conversion topology composed of a DC to DC boost converter for the extraction of maximum power available from the solar PV system based on incremental inductance technique and a three-level voltage source inverter (VSI) to connect PV farm to the power grid. To maintain the grid voltage and frequency within tolerance following disturbances such as voltage swells and sags, a fuzzy logic-based Dynamic Voltage Restorer is proposed. The role of the DVR is to protect critical loads from disturbances coming from the network. Different fault conditions scenarios are tested and the results such as voltage stability, real and reactive powers, current and power factor at the point of common coupling (PCC) are compared with and without the DVR system.Peer reviewe

    Efficacy of Smart PV Inverter as a Strategic Mitigator of Network Harmonic Resonance and a Suppressor of Temporary Overvoltage Phenomenon in Distribution Systems

    Get PDF
    The research work explores the design of Smart PV inverters in terms of modelling and investigates the efficacy of a Smart PV inverter as a strategic mitigator of network harmonic resonance phenomenon and a suppressor of Temporary Overvoltage (TOV) in distribution systems. The new application and the control strategy of Smart PV inverters can also be extended to SmartPark-Plug in Electric Vehicles as the grid becomes smarter. As the grid is becoming smarter, more challenges are encountered with the integration of PV plants in distribution systems. Smart PV inverters nowadays are equipped with specialized controllers for exchanging reactive power with the grid based on the available capacity of the inverter, after the real power generation. Although present investigators are researching on several applications of Smart PV inverters, none of the research-work in real time and in documentation have addressed the benefits of employing Smart PV inverters to mitigate network resonances. U.S based standard IEEE 519 for power quality describes the network resonance as a major contributor that has an impact on the harmonic levels. This dissertation proposes a new application for the first time in utilizing a Smart PV inverter to act as a virtual detuner in mitigating network resonance. As a part of the Smart PV inverter design, the LCL filter plays a vital role on network harmonic resonance and further has a direct impact on the stability of the controller and rest of the distribution system. Temporary Overvoltage (TOV) phenomenon is more pronounced especially during unbalanced faults like single line to ground faults (SLGF) in the presence of PV. Such an abnormal incident can damage the customer loads. IEEE 142-“Effective grounding” technique is employed to design the grounding scheme for synchronous based generators. The utilities have been trying to make a PV system comply with IEEE 142 standard as well. Several utilities are still employing the same grounding schemes even now. The attempt has resulted in diminishing the efficacy of protection schemes. Further, millions of dollars and power has been wasted by the utilities. As a result, the concept of effective grounding for PV system has become a challenge when utilities try to mitigate TOV. With an intention of economical aspects in distribution systems planning, this dissertation also proposes a new application and a novel control scheme for utilizing Smart PV/Smart Park inverters to mitigate TOV in distribution systems for the first time. In other words, this novel application can serve as an effective and supporting schema towards ineffective grounding systems. PSCAD/EMTDC has been used throughout the course of research. The idea of Smart inverters serving as a virtual detuner in mitigating network harmonic resonance and as a TOV suppressor in distribution systems has been devised based on the basic principle of VAR injection and absorption with a new control strategy respectively. This research would further serve as a pioneering approach for researchers and planning engineers working in distribution systems

    Study on Voltage Controlling Techniques In Grid Connected PV System

    Get PDF
    The energy is the very important parameter for survival or today’s growth we can transfer the energy from one form to other. The mainly wind and solar energies are the most available among other renewable energy sources in all over the world. In the present years, because of the rapid advances of power electronic systems the production of electricity from wind and photovoltaic energy sources have increased significantly. This paper proposed hybrid system is using of controlling power

    Overview of increasing the penetration of renewable energy sources in the distribution grid by developing control strategies and using ancillary services

    Get PDF
    Increasing the renewables energy resources in the distribution network is one of the main challenges of the distributed system operator due to instability, power quality and feeder capacity problems. This paper proposes a solution for further penetration of distributed energy resources, by developing control strategies and using ancillary services. Besides the penetration issues, the control strategies will mitigate power quality problems, voltage unbalance and will increase the immunity of the grid by provision of fault ride through capabilities

    Development of Robust and Dynamic Control Solutions for Energy Storage Enabled Hybrid AC/DC Microgrids

    Get PDF
    Development of Robust and Dynamic Control Solutions for Energy Storage Enabled Hybrid AC/DC Microgrid

    High Penetration of Power Electronic Interfaced Power Sources and the Potential Contribution of Grid Forming Converters

    Get PDF
    The traditional electrical power system and electricity markets have been designed to work with SGs, and so these have traditionally provided various 'inherent' capabilities to the system critical to ensure the stable operation of the power systems during severe faults and even basic system survival during rare system splits. Due to the potential total absence of SGs approaches during periods of high penetration (HP) of PEIPS infeed, the wider industry has engaged in a closer examination of the lack of these system capabilities [4], [17], [31], [32]. Traditionally, the focus in the context of PEIPS has been on steady state and a limited number of dynamic (faster) aspects recently expanded to include PEIPS contributing fast fault current during system faults and extended contribution to frequency management (although this latter capability has been required from RES for more than 10 years in some countries). Demand side contributions in these contexts are emerging and have significant potential

    System strength shortfall challenges for renewable energy-based power systems: A review

    Get PDF
    Renewable energy sources such as wind farms and solar power plants are replacing conventional coal-based synchronous generators (SGs) to achieve net-zero carbon emissions worldwide. SGs play an important role in enhancing system strength in a power system to make it more stable during voltage/frequency disruptions. However, traditional coal-fired SGs are being decommissioned in many parts of the world, owing to stringent environmental regulations and low levelized cost of energy of renewables. Consequently, maintaining system strength in a renewable energy-dominated power system has become a major challenge, and without adequate mitigation techniques, low system strength can potentially cause widespread power outages. This paper provides an overview of system strength and its measurement techniques in a power system with a large number of renewable energy sources (RESs), for example solar and wind farms. The review includes the system strength measurement techniques, mitigation approaches, and future challenges

    Ancillary Services Market Design in Distribution Networks: Review and Identification of Barriers

    Get PDF
    The high proliferation of converter-dominated Distributed Renewable Energy Sources (DRESs) at the distribution grid level has gradually replaced the conventional synchronous generators (SGs) of the transmission system, resulting in emerging stability and security challenges. The inherent characteristics of the SGs are currently used for providing ancillary services (ASs), following the instructions of the Transmission System Operator, while the DRESs are obliged to o er specific system support functions, without being remunerated for these functions, but only for the energy they inject. This changing environment has prompted the integration of energy storage systems as a solution for transfusing new characteristics and elaborating their business in the electricity markets, while the smart grid infrastructure and the upcoming microgrid architectures contribute to the transformation of the distribution grid. This review investigates the existing ASs in transmission system with the respective markets (emphasizing the DRESs’ participation in these markets) and proposes new ASs at distribution grid level, with emphasis to inertial response, active power ramp rate control, frequency response, voltage regulation, fault contribution and harmonic mitigation. The market tools and mechanisms for the procurement of these ASs are presented evolving the existing role of the Operators. Finally, potential barriers in the technical, regulatory, and financial framework have been identified and analyzed.Unión Europea (Programa Horizonte 2020) 76409
    • …
    corecore