305 research outputs found

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    An Improved Belief Entropy and Its Application in Decision-Making

    Get PDF

    Belief rule-base expert system with multilayer tree structure for complex problems modeling

    Get PDF
    Belief rule-base (BRB) expert system is one of recognized and fast-growing approaches in the areas of complex problems modeling. However, the conventional BRB has to suffer from the combinatorial explosion problem since the number of rules in BRB expands exponentially with the number of attributes in complex problems, although many alternative techniques have been looked at with the purpose of downsizing BRB. Motivated by this challenge, in this paper, multilayer tree structure (MTS) is introduced for the first time to define hierarchical BRB, also known as MTS-BRB. MTS- BRB is able to overcome the combinatorial explosion problem of the conventional BRB. Thereafter, the additional modeling, inferencing, and learning procedures are proposed to create a self-organized MTS-BRB expert system. To demonstrate the development process and benefits of the MTS-BRB expert system, case studies including benchmark classification datasets and research and development (R&D) project risk assessment have been done. The comparative results showed that, in terms of modelling effectiveness and/or prediction accuracy, MTS-BRB expert system surpasses various existing, as well as traditional fuzzy system-related and machine learning-related methodologie

    Pipe burst diagnostics using evidence theory

    Get PDF
    Copyright © IWA Publishing 2011.The definitive peer-reviewed and edited version of this article is published in Journal of Hydroinformatics Volume 13 Issue 4, pp. 596–608 (2011), DOI: 10.2166/hydro.2010.201 and is available at www.iwapublishing.com.This paper presents a decision support methodology aimed at assisting Water Distribution System (WDS) operators in the timely location of pipe bursts. This will enable them to react more systematically and promptly. The information gathered from various data sources to help locate where a pipe burst might have occurred is frequently conflicting and imperfect. The methodology developed in this paper deals effectively with such information sources. The raw data collected in the field is first processed by means of several models, namely the pipe burst prediction model, the hydraulic model and the customer contacts model. The Dempster–Shafer Theory of Evidence is then used to combine the outputs of these models with the aim of increasing the certainty of determining the location of a pipe burst within a WDS. This new methodology has been applied to several semi-real case studies. The results obtained demonstrate that the method shows potential for locating the area of a pipe burst by capturing the varying credibility of the individual models based on their historical performance

    Reliability Assessment Model for Industrial Control System Based on Belief Rule Base

    Get PDF
    This paper establishes a novel reliability assessment method for industrial control system (ICS). Firstly, the qualitative and quantitative information were integrated by evidential reasoning(ER) rule. Then, an ICS reliability assessment model was constructed based on belief rule base (BRB). In this way, both expert experience and historical data were fully utilized in the assessment. The model consists of two parts, a fault assessment model and a security assessment model. In addition, the initial parameters were optimized by covariance matrix adaptation evolution strategy (CMA-ES) algorithm, making the proposed model in line with the actual situation. Finally, the proposed model was compared with two other popular prediction methods through case study. The results show that the proposed method is reliable, efficient and accurate, laying a solid basis for reliability assessment of complex ICSs

    Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of monitoring complex real-world systems at a very high resolution. However, the deployment of a large number of unattended sensor nodes in hostile environments, frequent changes of environment dynamics, and severe resource constraints pose uncertainties and limit the potential use of WSN in complex real-world applications. Although uncertainty management in Artificial Intelligence (AI) is well developed and well investigated, its implications in wireless sensor environments are inadequately addressed. This dissertation addresses uncertainty management issues of spatio-temporal patterns generated from sensor data. It provides a framework for characterizing spatio-temporal pattern in WSN. Using rough set theory and temporal reasoning a novel formalism has been developed to characterize and quantify the uncertainties in predicting spatio-temporal patterns from sensor data. This research also uncovers the trade-off among the uncertainty measures, which can be used to develop a multi-objective optimization model for real-time decision making in sensor data aggregation and samplin

    Data Fusion for Materials Location Estimation in Construction

    Get PDF
    Effective automated tracking and locating of the thousands of materials on construction sites improves material distribution and project performance and thus has a significant positive impact on construction productivity. Many locating technologies and data sources have therefore been developed, and the deployment of a cost-effective, scalable, and easy-to-implement materials location sensing system at actual construction sites has very recently become both technically and economically feasible. However, considerable opportunity still exists to improve the accuracy, precision, and robustness of such systems. The quest for fundamental methods that can take advantage of the relative strengths of each individual technology and data source motivated this research, which has led to the development of new data fusion methods for improving materials location estimation. In this study a data fusion model is used to generate an integrated solution for the automated identification, location estimation, and relocation detection of construction materials. The developed model is a modified functional data fusion model. Particular attention is paid to noisy environments where low-cost RFID tags are attached to all materials, which are sometimes moved repeatedly around the site. A portion of the work focuses partly on relocation detection because it is closely coupled with location estimation and because it can be used to detect the multi-handling of materials, which is a key indicator of inefficiency. This research has successfully addressed the challenges of fusing data from multiple sources of information in a very noisy and dynamic environment. The results indicate potential for the proposed model to improve location estimation and movement detection as well as to automate the calculation of the incidence of multi-handling

    CONFIDENCE-BASED DECISION-MAKING SUPPORT FOR MULTI-SENSOR SYSTEMS

    Get PDF
    We live in a world where computer systems are omnipresent and are connected to more and more sensors. Ranging from small individual electronic assistants like smartphones to complex autonomous robots, from personal wearable health devices to professional eHealth frameworks, all these systems use the sensors’ data in order to make appropriate decisions according to the context they measure. However, in addition to complete failures leading to the lack of data delivery, these sensors can also send bad data due to influences from the environment which can sometimes be hard to detect by the computer system when checking each sensor individually. The computer system should be able to use its set of sensors as a whole in order to mitigate the influence of malfunctioning sensors, to overcome the absence of data coming from broken sensors, and to handle possible conflicting information coming from several sensors. In this thesis, we propose a computational model based on a two layer software architecture to overcome this challenge. In a first layer, classification algorithms will check for malfunctioning sensors and attribute a confidence value to each sensor. In the second layer, a rule-based proactive engine will then build a representation of the context of the system and use it along some empirical knowledge about the weaknesses of the different sensors to further tweak this confidence value. Furthermore, the system will then check for conflicting data between sensors. This can be done by having several sensors that measure the same parameters or by having multiple sensors that can be used together to calculate an estimation of a parameter given by another sensor. A confidence value will be calculated for this estimation as well, based on the confidence values of the related sensors. The successive design refinement steps of our model are shown over the course of three experiments. The first two experiments, located in the eHealth domain, have been used to better identify the challenges of such multi-sensor systems, while the third experiment, which consists of a virtual robot simulation, acts as a proof of concept for the semi-generic model proposed in this thesis
    • …
    corecore