17,475 research outputs found

    International White Book on DER Protection : Review and Testing Procedures

    Get PDF
    This white book provides an insight into the issues surrounding the impact of increasing levels of DER on the generator and network protection and the resulting necessary improvements in protection testing practices. Particular focus is placed on ever increasing inverter-interfaced DER installations and the challenges of utility network integration. This white book should also serve as a starting point for specifying DER protection testing requirements and procedures. A comprehensive review of international DER protection practices, standards and recommendations is presented. This is accompanied by the identiïŹ cation of the main performance challenges related to these protection schemes under varied network operational conditions and the nature of DER generator and interface technologies. Emphasis is placed on the importance of dynamic testing that can only be delivered through laboratory-based platforms such as real-time simulators, integrated substation automation infrastructure and ïŹ‚ exible, inverter-equipped testing microgrids. To this end, the combination of ïŹ‚ exible network operation and new DER technologies underlines the importance of utilising the laboratory testing facilities available within the DERlab Network of Excellence. This not only informs the shaping of new protection testing and network integration practices by end users but also enables the process of de-risking new DER protection technologies. In order to support the issues discussed in the white paper, a comparative case study between UK and German DER protection and scheme testing practices is presented. This also highlights the level of complexity associated with standardisation and approval mechanisms adopted by different countries

    Application of multiple resistive superconducting fault-current limiters for fast fault detection in highly interconnected distribution systems

    Get PDF
    Superconducting fault-current limiters (SFCLs) offer several benefits for electrical distribution systems, especially with increasing distributed generation and the requirements for better network reliability and efficiency. This paper examines the use of multiple SFCLs in a protection scheme to locate faulted circuits, using an approach which is radically different from typical proposed applications of fault current limitation, and also which does not require communications. The technique, referred to as “current division discrimination” (CDD), is based upon the intrinsic inverse current-time characteristics of resistive SFCLs, which ensures that only the SFCLs closest to a fault operate. CDD is especially suited to meshed networks and particularly when the network topology may change over time. Meshed networks are expensive and complex to protect using conventional methods. Simulation results with multiple SFCLs, using a thermal-electric superconductor model, confirm that CDD operates as expected. Nevertheless, CDD has limitations, which are examined in this paper. The SFCLs must be appropriately rated for the maximum system fault level, although some variation in actual fault level can be tolerated. For correct coordination between SFCLs, each bus must have at least three circuits that can supply fault current, and the SFCLs should have identical current-time characteristics

    Reliability analysis of distribution systems with photovoltaic generation using a power flow simulator and a parallel Monte Carlo approach

    Get PDF
    This paper presents a Monte Carlo approach for reliability assessment of distribution systems with distributed generation using parallel computing. The calculations are carried out with a royalty-free power flow simulator, OpenDSS (Open Distribution System Simulator). The procedure has been implemented in an environment in which OpenDSS is driven from MATLAB. The test system is an overhead distribution system represented by means of a three-phase model that includes protective devices. The paper details the implemented procedure, which can be applied to systems with or without distributed generation, includes an illustrative case study and summarizes the results derived from the analysis of the test system during one year. The goal is to evaluate the test system performance considering different scenarios with different level of system automation and reconfiguration, and assess the impact that distributed photovoltaic generation can have on that performance. Several reliability indices, including those related to the impact of distributed generation, are obtained for every scenario.Postprint (published version

    Intelligent Integrated Management for Telecommunication Networks

    Get PDF
    As the size of communication networks keeps on growing, faster connections, cooperating technologies and the divergence of equipment and data communications, the management of the resulting networks gets additional important and time-critical. More advanced tools are needed to support this activity. In this article we describe the design and implementation of a management platform using Artificial Intelligent reasoning technique. For this goal we make use of an expert system. This study focuses on an intelligent framework and a language for formalizing knowledge management descriptions and combining them with existing OSI management model. We propose a new paradigm where the intelligent network management is integrated into the conceptual repository of management information called Managed Information Base (MIB). This paper outlines the development of an expert system prototype based in our propose GDMO+ standard and describes the most important facets, advantages and drawbacks that were found after prototyping our proposal

    A distributed networked approach for fault detection of large-scale systems

    Get PDF
    Networked systems present some key new challenges in the development of fault diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multi-rate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based re-synchronization algorithm and a delay compensation strategy for distributed fault diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with timevarying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique

    Interconnection Networks for Scalable Quantum Computers

    Full text link
    We show that the problem of communication in a quantum computer reduces to constructing reliable quantum channels by distributing high-fidelity EPR pairs. We develop analytical models of the latency, bandwidth, error rate and resource utilization of such channels, and show that 100s of qubits must be distributed to accommodate a single data communication. Next, we show that a grid of teleportation nodes forms a good substrate on which to distribute EPR pairs. We also explore the control requirements for such a network. Finally, we propose a specific routing architecture and simulate the communication patterns of the Quantum Fourier Transform to demonstrate the impact of resource contention.Comment: To appear in International Symposium on Computer Architecture 2006 (ISCA 2006

    Analysis and quantification of the benefits of interconnected distribution system operation

    Get PDF
    In the UK, the Capacity to Customers (C2C) project is underway to determine the potential beneïŹts of increased interconnection in distribution systems, combined with demand side response technology. Managed contracts with customers, i.e., the agreement that certain loads are interruptible following system faults, allows distribution circuits to be loaded beyond the limits presently required for security of supply. This potentially permits load growth but avoids the cost and environmental impact of conventional network reinforcement. This paper provides the results of electrical system modelling to quantify the beneïŹts of the C2C operation, using actual circuit data and typical load distributions. Based upon simulations of these circuits, it is shown that increased interconnection generally leads to minor improvements in electrical losses and system voltage. By connecting managed (i.e., interruptible) loads, circuits typically can be loaded signiïŹcantly further than the present practice in the UK—an average increase of 66% for radial operation and 74% for interconnected systems

    Fault tolerant architectures for integrated aircraft electronics systems, task 2

    Get PDF
    The architectural basis for an advanced fault tolerant on-board computer to succeed the current generation of fault tolerant computers is examined. The network error tolerant system architecture is studied with particular attention to intercluster configurations and communication protocols, and to refined reliability estimates. The diagnosis of faults, so that appropriate choices for reconfiguration can be made is discussed. The analysis relates particularly to the recognition of transient faults in a system with tasks at many levels of priority. The demand driven data-flow architecture, which appears to have possible application in fault tolerant systems is described and work investigating the feasibility of automatic generation of aircraft flight control programs from abstract specifications is reported

    A review of networked microgrid protection: Architectures, challenges, solutions, and future trends

    Get PDF
    The design and selection of advanced protection schemes have become essential for the reliable and secure operation of networked microgrids. Various protection schemes that allow the correct operation of microgrids have been proposed for individual systems in different topologies and connections. Nevertheless, the protection schemes for networked microgrids are still in development, and further research is required to design and operate advanced protection in interconnected systems. The interconnection of these microgrids in different nodes with various interconnection technologies increases the fault occurrence and complicates the protection operation. This paper aims to point out the challenges in developing protection for networked microgrids, potential solutions, and research areas that need to be addressed for their development. First, this article presents a systematic analysis of the different microgrid clusters proposed since 2016, including several architectures of networked microgrids, operation modes, components, and utilization of renewable sources, which have not been widely explored in previous review papers. Second, the paper presents a discussion on the protection systems currently available for microgrid clusters, current challenges, and solutions that have been proposed for these systems. Finally, it discusses the trend of protection schemes in networked microgrids and presents some conclusions related to implementation
    • 

    corecore