3,059 research outputs found

    Rapid mapping of digital integrated circuit logic gates via multi-spectral backside imaging

    Full text link
    Modern semiconductor integrated circuits are increasingly fabricated at untrusted third party foundries. There now exist myriad security threats of malicious tampering at the hardware level and hence a clear and pressing need for new tools that enable rapid, robust and low-cost validation of circuit layouts. Optical backside imaging offers an attractive platform, but its limited resolution and throughput cannot cope with the nanoscale sizes of modern circuitry and the need to image over a large area. We propose and demonstrate a multi-spectral imaging approach to overcome these obstacles by identifying key circuit elements on the basis of their spectral response. This obviates the need to directly image the nanoscale components that define them, thereby relaxing resolution and spatial sampling requirements by 1 and 2 - 4 orders of magnitude respectively. Our results directly address critical security needs in the integrated circuit supply chain and highlight the potential of spectroscopic techniques to address fundamental resolution obstacles caused by the need to image ever shrinking feature sizes in semiconductor integrated circuits

    Optimization of Cell-Aware Test

    Get PDF

    Optimization of Cell-Aware Test

    Get PDF

    An efficient logic fault diagnosis framework based on effect-cause approach

    Get PDF
    Fault diagnosis plays an important role in improving the circuit design process and the manufacturing yield. With the increasing number of gates in modern circuits, determining the source of failure in a defective circuit is becoming more and more challenging. In this research, we present an efficient effect-cause diagnosis framework for combinational VLSI circuits. The framework consists of three stages to obtain an accurate and reasonably precise diagnosis. First, an improved critical path tracing algorithm is proposed to identify an initial suspect list by backtracing from faulty primary outputs toward primary inputs. Compared to the traditional critical path tracing approach, our algorithm is faster and exact. Second, a novel probabilistic ranking model is applied to rank the suspects so that the most suspicious one will be ranked at or near the top. Several fast filtering methods are used to prune unrelated suspects. Finally, to refine the diagnosis, fault simulation is performed on the top suspect nets using several common fault models. The difference between the observed faulty behavior and the simulated behavior is used to rank each suspect. Experimental results on ISCAS85 benchmark circuits show that this diagnosis approach is efficient both in terms of memory space and CPU time and the diagnosis results are accurate and reasonably precise

    Hardware Fault Injection

    Get PDF
    Hardware fault injection is the widely accepted approach to evaluate the behavior of a circuit in the presence of faults. Thus, it plays a key role in the design of robust circuits. This chapter presents a comprehensive review of hardware fault injection techniques, including physical and logical approaches. The implementation of effective fault injection systems is also analyzed. Particular emphasis is made on the recently developed emulation-based techniques, which can provide large flexibility along with unprecedented levels of performance. These capabilities provide a way to tackle reliability evaluation of complex circuits.Publicad

    Measurement-based quantum computation with qubit and continuous-variable systems

    Get PDF
    Quantum computers offer impressive computational speed-ups over their present-day (classical) counterparts. In the measurement-based model, quantum computation is driven by single-site measurements on a large entangled quantum state known as a cluster state. This thesis explores extensions of the measurement-based model for quantum computation in qubit and continuous-variable systems. Within the qubit setting, we consider the task of characterizing how well a small-scale measurement-based quantum device can perform logic gates. We adapt a pre-existing scheme known as randomized benchmarking into the setting of measurement-based quantum computation on a one-dimensional cluster state. A key feature of randomized benchmarking is that it uses random sequences of gates. We show how the intrinsic randomness of measurement-based quantum computation can be harnessed when implementing them. Within the continuous-variable setting, we consider optical cluster states that can be generated with current technology. We propose a compact method for generating universal cluster states based on optical-parametric-oscillator technology. We consider how finite squeezing effects manifest in computation and show that pre-existing measurement-based protocols are suboptimal. We propose new measurement-based protocols that have better noise properties, compactness, and circuit flexibility. As an application, we introduce a measurement-based method for implementing interferometry. In this model, the finite squeezing noise can be dealt with as a photon-loss process. Building further on this work, we investigate the resource requirements of a measurement-based boson-sampling device, proving simultaneous efficiency in time, space, and squeezing (energy) resources. These results offer new insights into how to build, use, and characterize a measurement-based quantum computer

    Quantum leakage detection using a model-independent dimension witness

    Full text link
    Users of quantum computers must be able to confirm they are indeed functioning as intended, even when the devices are remotely accessed. In particular, if the Hilbert space dimension of the components are not as advertised -- for instance if the qubits suffer leakage -- errors can ensue and protocols may be rendered insecure. We refine the method of delayed vectors, adapted from classical chaos theory to quantum systems, and apply it remotely on the IBMQ platform -- a quantum computer composed of transmon qubits. The method witnesses, in a model-independent fashion, dynamical signatures of higher-dimensional processes. We present evidence, under mild assumptions, that the IBMQ transmons suffer state leakage, with a pp value no larger than 5×1045{\times}10^{-4} under a single qubit operation. We also estimate the number of shots necessary for revealing leakage in a two-qubit system.Comment: 11 pages, 5 figure
    corecore