198 research outputs found

    Development of new fault detection methods for rotating machines (roller bearings)

    Get PDF
    Abstract Early fault diagnosis of roller bearings is extremely important for rotating machines, especially for high speed, automatic and precise machines. Many research efforts have been focused on fault diagnosis and detection of roller bearings, since they constitute one the most important elements of rotating machinery. In this study a combination method is proposed for early damage detection of roller bearing. Wavelet packet transform (WPT) is applied to the collected data for denoising and the resulting clean data are break-down into some elementary components called Intrinsic mode functions (IMFs) using Ensemble empirical mode decomposition (EEMD) method. The normalized energy of three first IMFs are used as input for Support vector machine (SVM) to recognize whether signals are sorting out from healthy or faulty bearings. Then, since there is no robust guide to determine amplitude of added noise in EEMD technique, a new Performance improved EEMD (PIEEMD) is proposed to determine the appropriate value of added noise. A novel feature extraction method is also proposed for detecting small size defect using Teager-Kaiser energy operator (TKEO). TKEO is applied to IMFs obtained to create new feature vectors as input data for one-class SVM. The results of applying the method to acceleration signals collected from an experimental bearing test rig demonstrated that the method can be successfully used for early damage detection of roller bearings. Most of the diagnostic methods that have been developed up to now can be applied for the case stationary working conditions only (constant speed and load). However, bearings often work at time-varying conditions such as wind turbine supporting bearings, mining excavator bearings, vehicles, robots and all processes with run-up and run-down transients. Damage identification for bearings working under non-stationary operating conditions, especially for early/small defects, requires the use of appropriate techniques, which are generally different from those used for the case of stationary conditions, in order to extract fault-sensitive features which are at the same time insensitive to operational condition variations. Some methods have been proposed for damage detection of bearings working under time-varying speed conditions. However, their application might increase the instrumentation cost because of providing a phase reference signal. Furthermore, some methods such as order tracking methods still can be applied when the speed variation is limited. In this study, a novel combined method based on cointegration is proposed for the development of fault features which are sensitive to the presence of defects while in the same time they are insensitive to changes in the operational conditions. It does not require any additional measurements and can identify defects even for considerable speed variations. The signals acquired during run-up condition are decomposed into IMFs using the performance improved EEMD method. Then, the cointegration method is applied to the intrinsic mode functions to extract stationary residuals. The feature vectors are created by applying the Teager-Kaiser energy operator to the obtained stationary residuals. Finally, the feature vectors of the healthy bearing signals are utilized to construct a separating hyperplane using one-class support vector machine. Eventually the proposed method was applied to vibration signals measured on an experimental bearing test rig. The results verified that the method can successfully distinguish between healthy and faulty bearings even if the shaft speed changes dramatically

    Novel deep cross-domain framework for fault diagnosis or rotary machinery in prognostics and health management

    Get PDF
    Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This doctoral research provides a systematic review of state-of-the-art deep learning-based PHM frameworks, an empirical analysis on bearing fault diagnosis benchmarks, and a novel multi-source domain adaptation framework. It emphasizes the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. Besides, the limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research. The empirical study of the benchmarks highlights the evaluation results of the existing models on bearing fault diagnosis benchmark datasets in terms of various performance metrics such as accuracy and training time. The result of the study is very important for comparing or testing new models. A novel multi-source domain adaptation framework for fault diagnosis of rotary machinery is also proposed, which aligns the domains in both feature-level and task-level. The proposed framework transfers the knowledge from multiple labeled source domains into a single unlabeled target domain by reducing the feature distribution discrepancy between the target domain and each source domain. Besides, the model can be easily reduced to a single-source domain adaptation problem. Also, the model can be readily updated to unsupervised domain adaptation problems in other fields such as image classification and image segmentation. Further, the proposed model is modified with a novel conditional weighting mechanism that aligns the class-conditional probability of the domains and reduces the effect of irrelevant source domain which is a critical issue in multi-source domain adaptation algorithms. The experimental verification results show the superiority of the proposed framework over state-of-the-art multi-source domain-adaptation models

    Bayesian Stochastic Neural Network Model for Turbomachinery Damage Prediction

    Get PDF
    Turbomachinery often suffers various defects such as impeller cracking, resulting in forced outage, increased maintenance costs, and reduced productivity. Condition monitoring and damage prognostics has been widely used as an increasingly important and powerful tool to improve the system availability, reliability, performance, and maintainability, but still very challenging due to multiple sources of data uncertainties and the complexity of analytics modeling. This paper presents an intelligent probabilistic methodology for anomaly prediction of high-fidelity turbomachine, considering multiple data imperfections and multivariate correlation. The proposed method adeptly integrates several advanced state-of-the-art signal processing and artificial intelligence techniques: wavelet multi-resolution decomposition, Bayesian hypothesis testing, probabilistic principal component analysis, and fuzzy stochastic neural network modeling. The advanced signal processing is employed to reduce dimensionality and to address multivariate correlation and data uncertainty for damage prediction. Instead of conventionally using raw time series data, principal components are utilized in the establishment of stochastic neural network model and anomaly prediction. Bayesian interval hypothesis testing metric is then presented to quantitatively compare the predicted and measured data for model validation and anomaly evaluation, thus providing a confidence indicator to judge the model quality and evaluate the equipment status. Bayesian method is developed in this study for denoising the raw data with multiresolution wavelet decomposition, quantifying the model accuracy, and assessing the equipment status. The dynamic stochastic neural network model is established via the nonlinear autoregressive moving average with exogenous inputs approach. It seamlessly integrates the fuzzy clustering and independent Bernoulli random function into radial basis function neural network. A natural gradient method based on Kullback-Leibler distance criterion is employed to maximize the log-likelihood loss function. The effectiveness of the proposed methodology and procedure is demonstrated with the 11-variable time series data and the forced outage event of a real-world centrifugal compressor

    Gear Health Monitoring and RUL Prediction Based on MSB Analysis

    Get PDF

    Diagnosis of tidal turbine vibration data through deep neural networks

    Get PDF
    Tidal power is an emerging field of renewable energy, harnessing the power of regular and predictable tidal currents. However, maintenance of submerged equipment is a major challenge. Routine visual inspections of equipment must be performed onshore, requiring the costly removal of turbines from the sea bed and resulting in long periods of downtime. The development of condition monitoring techniques providing automated fault detection can therefore be extremely beneficial to this industry, reducing the dependency on inspections and allowing maintenance to be planned efficiently. This paper investigates the use of deep learning approaches for fault detection within a tidal turbine's generator from vibration data. Training and testing data were recorded over two deployment periods of operation from an accelerometer sensor placed within the nacelle of the turbine, representing ideal and faulty responses over a range of operating conditions. The paper evaluates a deep learning approach through a stacked autoencoder network in comparison to feature-based classification methods, where features have been extracted over varying rotation speeds through the Vold-Kalma filter

    Computing Intelligence Technique and Multiresolution Data Processing for Condition Monitoring

    Get PDF
    Condition monitoring (CM) of rotary machines has gained increasing importance and extensive research in recent years. Due to the rapid growth of data volume, automated data processing is necessary in order to deal with massive data efficiently to produce timely and accurate diagnostic results. Artificial intelligence (AI) and adaptive data processing approaches can be promising solutions to the challenge of large data volume. Unfortunately, the majority of AI-based techniques in CM have been developed for only the post-processing (classification) stage, whereas the critical tasks including feature extraction and selection are still manually processed, which often require considerable time and efforts but also yield a performance depending on prior knowledge and diagnostic expertise. To achieve an automatic data processing, the research of this PhD project provides an integrated framework with two main approaches. Firstly, it focuses on extending AI techniques in all phases, including feature extraction by applying Componential Coding Neural Network (CCNN) which has been found to have unique properties of being trained through unsupervised learning, capable of dealing with raw datasets, translation invariance and high computational efficiency. These advantages of CCNN make it particularly suitable for automated analyzing of the vibration data arisen from typical machine components such as the rolling element bearings which exhibit periodic phenomena with high non-stationary and strong noise contamination. Then, once an anomaly is detected, a further analysis technique to identify the fault is proposed using a multiresolution data analysis approach based on Double-Density Discrete Wavelet Transform (DD-DWT) which was grounded on over-sampled filter banks with smooth tight frames. This makes it nearly shift-invariant which is important for extracting non-stationary periodical peaks. Also, in order to denoise and enhance the diagnostic features, a novel level-dependant adaptive thresholding method based on harmonic to signal ratio (HSR) is developed and implemented on the selected wavelet coefficients. This method has been developed to be a semi-automated (adaptive) approach to facilitate the process of fault diagnosis. The developed framework has been evaluated using both simulated and measured datasets from typical healthy and defective tapered roller bearings which are critical parts of all rotating machines. The results have demonstrated that the CCNN is a robust technique for early fault detection, and also showed that adaptive DD-DWT is a robust technique for diagnosing the faults induced to test bearings. The developed framework has achieved multi-objectives of high detection sensitivity, reliable diagnosis and minimized computing complexity

    Few-Shot Learning Approaches for Fault Diagnosis Using Vibration Data: A Comprehensive Review

    Get PDF
    Fault detection and diagnosis play a crucial role in ensuring the reliability and safety of modern industrial systems. For safety and cost considerations, critical equipment and systems in industrial operations are typically not allowed to operate in severe fault states. Moreover, obtaining labeled samples for fault diagnosis often requires significant human effort. This results in limited labeled data for many application scenarios. Thus, the focus of attention has shifted towards learning from a small amount of data. Few-shot learning has emerged as a solution to this challenge, aiming to develop models that can effectively solve problems with only a few samples. This approach has gained significant traction in various fields, such as computer vision, natural language processing, audio and speech, reinforcement learning, robotics, and data analysis. Surprisingly, despite its wide applicability, there have been limited investigations or reviews on applying few-shot learning to the field of mechanical fault diagnosis. In this paper, we provide a comprehensive review of the relevant work on few-shot learning in mechanical fault diagnosis from 2018 to September 2023. By examining the existing research, we aimed to shed light on the potential of few-shot learning in this domain and offer valuable insights for future research directions
    • …
    corecore