31 research outputs found

    A Fault Diagnosis Method for Power Transmission Networks Based on Spiking Neural P Systems with Self-Updating Rules considering Biological Apoptosis Mechanism

    Get PDF
    Power transmission networks play an important role in smart girds. Fast and accurate faulty-equipment identification is critical for fault diagnosis of power systems; however, it is rather difficult due to uncertain and incomplete fault alarm messages in fault events. This paper proposes a new fault diagnosis method of transmission networks in the framework of membrane computing. We first propose a class of spiking neural P systems with self-updating rules (srSNPS) considering biological apoptosis mechanism and its self-updating matrix reasoning algorithm. The srSNPS, for the first time, effectively unitizes the attribute reduction ability of rough sets and the apoptosis mechanism of biological neurons in a P system, where the apoptosis algorithm for condition neurons is devised to delete redundant information in fault messages. This simplifies the complexity of the srSNPS model and allows us to deal with the uncertainty and incompleteness of fault information in an objective way without using historical statistics and expertise. Then, the srSNPS-based fault diagnosis method is proposed. It is composed of the transmission network partition, the SNPS model establishment, the pulse value correction and computing, and the protection device behavior evaluation, where the first two components can be finished before failures to save diagnosis time. Finally, case studies based on the IEEE 14- and IEEE 118-bus systems verify the effectiveness and superiority of the proposed method

    Probability Transform Based on the Ordered Weighted Averaging and Entropy Difference

    Get PDF
    Dempster-Shafer evidence theory can handle imprecise and unknown information, which has attracted many people. In most cases, the mass function can be translated into the probability, which is useful to expand the applications of the D-S evidence theory. However, how to reasonably transfer the mass function to the probability distribution is still an open issue. Hence, the paper proposed a new probability transform method based on the ordered weighted averaging and entropy difference. The new method calculates weights by ordered weighted averaging, and adds entropy difference as one of the measurement indicators. Then achieved the transformation of the minimum entropy difference by adjusting the parameter r of the weight function. Finally, some numerical examples are given to prove that new method is more reasonable and effective

    A Kernel-Based Membrane Clustering Algorithm

    Get PDF
    The existing membrane clustering algorithms may fail to handle the data sets with non-spherical cluster boundaries. To overcome the shortcoming, this paper introduces kernel methods into membrane clustering algorithms and proposes a kernel-based membrane clustering algorithm, KMCA. By using non-linear kernel function, samples in original data space are mapped to data points in a high-dimension feature space, and the data points are clustered by membrane clustering algorithms. Therefore, a data clustering problem is formalized as a kernel clustering problem. In KMCA algorithm, a tissue-like P system is designed to determine the optimal cluster centers for the kernel clustering problem. Due to the use of non-linear kernel function, the proposed KMCA algorithm can well deal with the data sets with non-spherical cluster boundaries. The proposed KMCA algorithm is evaluated on nine benchmark data sets and is compared with four existing clustering algorithms

    Dynamic threshold neural P systems

    Get PDF
    Pulse coupled neural networks (PCNN, for short) are models abstracting the synchronization behavior observed experimentally for the cortical neurons in the visual cortex of a cat鈥檚 brain, and the intersecting cortical model is a simplified version of the PCNN model. Membrane computing (MC) is a kind computation paradigm abstracted from the structure and functioning of biological cells that provide models working in cell-like mode, neural-like mode and tissue-like mode. Inspired from intersecting cortical model, this paper proposes a new kind of neural-like P systems, called dynamic threshold neural P systems (for short, DTNP systems). DTNP systems can be represented as a directed graph, where nodes are dynamic threshold neurons while arcs denote synaptic connections of these neurons. DTNP systems provide a kind of parallel computing models, they have two data units (feeding input unit and dynamic threshold unit) and the neuron firing mechanism is implemented by using a dynamic threshold mechanism. The Turing universality of DTNP systems as number accepting/generating devices is established. In addition, an universal DTNP system having 109 neurons for computing functions is constructed.National Natural Science Foundation of China No 61472328Research Fund of Sichuan Science and Technology Project No. 2018JY0083Chunhui Project Foundation of the Education Department of China No. Z2016143Chunhui Project Foundation of the Education Department of China No. Z2016148Research Foundation of the Education Department of Sichuan province No. 17TD003

    Asynchronous Spiking Neural P Systems with Multiple Channels and Symbols

    Get PDF
    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computation systems, inspired from the way that the neurons process and communicate information by means of spikes. A new variant of SNP systems, which works in asynchronous mode, asynchronous spiking neural P systems with multiple channels and symbols (ASNP-MCS systems, in short), is investigated in this paper. There are two interesting features in ASNP-MCS systems: multiple channels and multiple symbols. That is, every neuron has more than one synaptic channels to connect its subsequent neurons, and every neuron can deal with more than one type of spikes. The variant works in asynchronous mode: in every step, each neuron can be free to fire or not when its rules can be applied. The computational completeness of ASNP-MCS systems is investigated. It is proved that ASNP-MCS systems as number generating and accepting devices are Turing universal. Moreover, we obtain a small universal function computing device that is an ASNP-MCS system with 67 neurons. Specially, a new idea that can solve ``block'' problems is proposed in INPUT modules

    A Spectral Clustering Algorithm Improved by P Systems

    Get PDF
    Using spectral clustering algorithm is diffcult to find the clusters in the cases that dataset has a large difference in density and its clustering effect depends on the selection of initial centers. To overcome the shortcomings, we propose a novel spectral clustering algorithm based on membrane computing framework, called MSC algorithm, whose idea is to use membrane clustering algorithm to realize the clustering component in spectral clustering. A tissue-like P system is used as its computing framework, where each object in cells denotes a set of cluster centers and velocity-location model is used as the evolution rules. Under the control of evolutioncommunication mechanism, the tissue-like P system can obtain a good clustering partition for each dataset. The proposed spectral clustering algorithm is evaluated on three artiffcial datasets and ten UCI datasets, and it is further compared with classical spectral clustering algorithms. The comparison results demonstrate the advantage of the proposed spectral clustering algorithm

    Information Volume of Mass Function

    Get PDF
    Given a probability distribution, its corresponding information volume is Shannon entropy. However, how to determine the information volume of a given mass function is still an open issue. Based on Deng entropy, the information volume of mass function is presented in this paper. Given a mass function, the corresponding information volume is larger than its uncertainty measured by Deng entropy. In addition, when the cardinal of the frame of discernment is identical, both the total uncertainty case and the BPA distribution of the maximum Deng entropy have the same information volume. Some numerical examples are illustrated to show the efficiency of the proposed information volume of mass function

    The Pseudo-Pascal Triangle of Maximum Deng Entropy

    Get PDF
    PPascal triangle (known as Yang Hui Triangle in Chinese) is an important model in mathematics while the entropy has been heavily studied in physics or as uncertainty measure in information science. How to construct the the connection between Pascal triangle and uncertainty measure is an interesting topic. One of the most used entropy, Tasllis entropy, has been modelled with Pascal triangle. But the relationship of the other entropy functions with Pascal triangle is still an open issue. Dempster-Shafer evidence theory takes the advantage to deal with uncertainty than probability theory since the probability distribution is generalized as basic probability assignment, which is more efficient to model and handle uncertain information. Given a basic probability assignment, its corresponding uncertainty measure can be determined by Deng entropy, which is the generalization of Shannon entropy. In this paper, a Pseudo-Pascal triangle based the maximum Deng entropy is constructed. Similar to the Pascal triangle modelling of Tasllis entropy, this work provides the a possible way of Deng entropy in physics and information theory

    Fuzzy Membrane Computing: Theory and Applications

    Get PDF
    Fuzzy membrane computing is a newly developed and promising research direction in the area of membrane computing that aims at exploring the complex in- teraction between membrane computing and fuzzy theory. This paper provides a comprehensive survey of theoretical developments and various applications of fuzzy membrane computing, and sketches future research lines. The theoretical develop- ments are reviewed from the aspects of uncertainty processing in P systems, fuzzifica- tion of P systems and fuzzy knowledge representation and reasoning. The applications of fuzzy membrane computing are mainly focused on fuzzy knowledge representation and fault diagnosis. An overview of different types of fuzzy P systems, differences between spiking neural P systems and fuzzy reasoning spiking neural P systems and newly obtained results on these P systems are presented
    corecore