44 research outputs found

    Neural Network-Based Train Identification in Railway Switches and Crossings Using Accelerometer Data

    Get PDF
    This paper aims to analyse possibilities of train type identification in railway switches and crossings (S&C) based on accelerometer data by using contemporary machine learning methods such as neural networks. That is a unique approach since trains have been only identified in a straight track. Accelerometer sensors placed around the S&C structure were the source of input data for subsequent models. Data from four S&C at different locations were considered and various neural network architectures evaluated. The research indicated the feasibility to identify trains in S&C using neural networks from accelerometer data. Models trained at one location are generally transferable to another location despite differences in geometrical parameters, substructure, and direction of passing trains. Other challenges include small dataset and speed variation of the trains that must be considered for accurate identification. Results are obtained using statistical bootstrapping and are presented in a form of confusion matrices

    A Literature Review of Fault Diagnosis Based on Ensemble Learning

    Get PDF
    The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance

    A literature review of Artificial Intelligence applications in railway systems

    Get PDF
    Nowadays it is widely accepted that Artificial Intelligence (AI) is significantly influencing a large number of domains, including railways. In this paper, we present a systematic literature review of the current state-of-the-art of AI in railway transport. In particular, we analysed and discussed papers from a holistic railway perspective, covering sub-domains such as maintenance and inspection, planning and management, safety and security, autonomous driving and control, revenue management, transport policy, and passenger mobility. This review makes an initial step towards shaping the role of AI in future railways and provides a summary of the current focuses of AI research connected to rail transport. We reviewed about 139 scientific papers covering the period from 2010 to December 2020. We found that the major research efforts have been put in AI for rail maintenance and inspection, while very limited or no research has been found on AI for rail transport policy and revenue management. The remaining sub-domains received mild to moderate attention. AI applications are promising and tend to act as a game-changer in tackling multiple railway challenges. However, at the moment, AI research in railways is still mostly at its early stages. Future research can be expected towards developing advanced combined AI applications (e.g. with optimization), using AI in decision making, dealing with uncertainty and tackling newly rising cybersecurity challenges

    Deep-Learning and Vibration-Based System for Wear Size Estimation of Railway Switches and Crossings

    Get PDF
    The switch and crossing (S&C) is one of the most important parts of the railway infrastructure network due to its significant influence on traffic delays and maintenance costs. Two central questions were investigated in this paper: (I) the first question is related to the feasibility of exploring the vibration data for wear size estimation of railway S&C and (II) the second one is how to take advantage of the Artificial Intelligence (AI)-based framework to design an effective early-warning system at early stage of S&C wear development. The aim of the study was to predict the amount of wear in the entire S&C, using medium-range accelerometer sensors. Vibration data were collected, processed, and used for developing accurate data-driven models. Within this study, AI-based methods and signal-processing techniques were applied and tested in a full-scale S&C test rig at Lulea University of Technology to investigate the effectiveness of the proposed method. A real-scale railway wagon bogie was used to study different relevant types of wear on the switchblades, support rail, middle rail, and crossing part. All the sensors were housed inside the point machine as an optimal location for protection of the data acquisition system from harsh weather conditions such as ice and snow and from the ballast. The vibration data resulting from the measurements were used to feed two different deep-learning architectures, to make it possible to achieve an acceptable correlation between the measured vibration data and the actual amount of wear. The first model is based on the ResNet architecture where the input data are converted to spectrograms. The second model was based on a long short-term memory (LSTM) architecture. The proposed model was tested in terms of its accuracy in wear severity classification. The results show that this machine learning method accurately estimates the amount of wear in different locations in the S&C

    Approaches for diagnosis and prognosis of asset condition: application to railway switch systems

    Get PDF
    This thesis presents a novel fault diagnosis and prognosis methodology which is applied to railway switches. To improve on existing fault diagnosis, energy-based thresholding wavelets (EBTW) are introduced. EBTW are used to decompose sensor measurement signals, and then to reconstruct them within a lower dimensional feature vector. The extracted features replace the original signals and are fed into a neural network classifier for fault diagnosis. Compared to existing wavelet-based feature extraction methods, the new EBTW method has the advantage of an intrinsic energy conservation property during the wavelet transform process. The EBTW method localises and redistributes the signal energy to realise an efficient feature extraction and dimension reduction. The presented diagnosis approach is validated using real-world switch data collected from the Guangzhou Metro in China. The results show that the proposed diagnosis approach can achieve 100% accuracy in identifying a railway switch overdriving fault with various severities, improving upon existing methods of conventional discrete wavelet transform (C-DWT) and soft-thresholding discrete wavelet transform (ST-DWT) by 8.33% and 16.67%, respectively. The presented prognosis approach is constructed based on traditional data-driven prognosis modelling. The concept of a remaining maintenance-free operating period (RMFOP) is introduced, which transforms the usefulness of sensor measurement data that is readily available from operations prior to failure. Useful features are then extracted from the original measurement data, and modelled using linear and exponential regression curve fitting models. By extracting key features, the original measurement data can be transformed into degradation signals that directly reflect the variations in each movement of a switch machine. The features are then fed into regression models to derive the probability distribution of switch residual life. To update the probability distribution from one operation to the next, Bayesian theory is incorporated into the models. The proposed RMFOP-based approach is validated using real-world electrical current sensor measurement data that were collected between January 2018 and February 2019 from multiple operational railway switches across Great Britain. The results show that the linear model and the exponential model can both provide residual life distributions with a satisfactory prediction accuracy. The exponential model demonstrates better predictions, the accuracy of which exceeds 95% when 90% life percentage has elapsed. By applying the RMFOP-based prognosis approach to operational data, the railway switch health condition that is affected by incipient overdriving failure is predicted

    Advanced Sensors for Real-Time Monitoring Applications

    Get PDF
    It is impossible to imagine the modern world without sensors, or without real-time information about almost everything—from local temperature to material composition and health parameters. We sense, measure, and process data and act accordingly all the time. In fact, real-time monitoring and information is key to a successful business, an assistant in life-saving decisions that healthcare professionals make, and a tool in research that could revolutionize the future. To ensure that sensors address the rapidly developing needs of various areas of our lives and activities, scientists, researchers, manufacturers, and end-users have established an efficient dialogue so that the newest technological achievements in all aspects of real-time sensing can be implemented for the benefit of the wider community. This book documents some of the results of such a dialogue and reports on advances in sensors and sensor systems for existing and emerging real-time monitoring applications

    A real-time fault detection framework based on unsupervised deep learning for prognostics and health management of railway assets

    Get PDF
    Fault detection based on deep learning has been intensively investigated in the recent decade due to increasing availability of data and its ability to engineer features with deep neural network architectures. Despite much attention to its application, the major challenge is the lack of available labelled datasets to build the models since maintenance is usually conducted regularly to avoid significant defects. This paper aims to propose a successful real-time fault detection framework based on unsupervised deep learning using only healthy normal data. The approach is based on autoencoder architecture and a one-class support vector machine as a classifier. As a case study, large real-world datasets acquired from railway door systems have been employed. The five different types of deep learning models and a one-class classifier are trained and comprehensively validated based on performance metrics and sensitivity analysis. In addition, two experiments have been carried out to verify the model’s adaptability and robustness to variational time-series data. The result shows a typical autoencoder is the least sensitive to a decision boundary set by the one-class classifier. However, the two experiments show that the fault detection accuracy for a bidirectional long short-term memory-based autoencoder is considerably higher than other autoencoder-based models at 0.970 and 0.966 as F1 score, meaning only this model is adaptable and robust to variational data. The experimental result allows us to obtain the understandability of the deep learning models. Furthermore, the regions of anomalies are localised with unsupervised models, which enables diagnosing the cause of failure

    Real-time techniques for fault detection on railway door systems

    Get PDF
    This paper focuses on real-time techniques for fault detection in railway assets through large real-world datasets. It aims to investigate data mining methods to detect faulty behaviour in time series data. A fault detection on railway door systems is carried out using motor current and encoder signal. The door data highlighted start-stop characteristics, with discontinuities in the data. This paper presents a successful fault detection technique, which is a feature-based machine learning method that requires several steps for time-series data processing, such as signal segmentation and the extraction of features. Principal Component Analysis (PCA) is applied to reduce the dimensionality of the extracted feature set and generate condition indicators. Then, the k-means algorithm is employed to separate normal and abnormal behaviour. This is followed by an evaluation of the proposed method and discussion about current challenges and prognosis possibility

    Gear Health Monitoring and RUL Prediction Based on MSB Analysis

    Get PDF

    Fault Detection and RUL Estimation for Railway HVAC Systems Using a Hybrid Model-Based Approach

    Get PDF
    Heating, ventilation, and air conditioning (HVAC) systems installed in a passenger train carriage are critical systems, whose failures can affect people or the environment. This, together with restrictive regulations, results in the replacement of critical components in initial stages of degradation, as well as a lack of data on advanced stages of degradation. This paper proposes a hybrid model-based approach (HyMA) to overcome the lack of failure data on a HVAC system installed in a passenger train carriage. The proposed HyMA combines physics-based models with data-driven models to deploy diagnostic and prognostic processes for a complex and critical system. The physics-based model generates data on healthy and faulty working conditions; the faults are generated in different levels of degradation and can appear individually or together. A fusion of synthetic data and measured data is used to train, validate, and test the proposed hybrid model (HyM) for fault detection and diagnostics (FDD) of the HVAC system. The model obtains an accuracy of 92.60%. In addition, the physics-based model generates run-to-failure data for the HVAC air filter to develop a remaining useful life (RUL) prediction model, the RUL estimations performed obtained an accuracy in the range of 95.21–97.80% Both models obtain a remarkable accuracy. The development presented will result in a tool which provides relevant information on the health state of the HVAC system, extends its useful life, reduces its life cycle cost, and improves its reliability and availability; thus enhancing the sustainability of the system.Research was funded by the Basque Government, through ELKARTEK (ref. KK-2020/00049) funding grant
    corecore