535 research outputs found

    Exploiting gan as an oversampling method for imbalanced data augmentation with application to the fault diagnosis of an industrial robot

    Get PDF
    O diagnóstico inteligente de falhas baseado em aprendizagem máquina geralmente requer um conjunto de dados balanceados para produzir um desempenho aceitável. No entanto, a obtenção de dados quando o equipamento industrial funciona com falhas é uma tarefa desafiante, resultando frequentemente num desequilíbrio entre dados obtidos em condições nominais e com falhas. As técnicas de aumento de dados são das abordagens mais promissoras para mitigar este problema. Redes adversárias generativas (GAN) são um tipo de modelo generativo que consiste de um módulo gerador e de um discriminador. Por meio de aprendizagem adversária entre estes módulos, o gerador otimizado pode produzir padrões sintéticos que podem ser usados para amumento de dados. Investigamos se asGANpodem ser usadas como uma ferramenta de sobre amostra- -gem para compensar um conjunto de dados desequilibrado em uma tarefa de diagnóstico de falhas num manipulador robótico industrial. Realizaram-se uma série de experiências para validar a viabilidade desta abordagem. A abordagem é comparada com seis cenários, incluindo o método clássico de sobre amostragem SMOTE. Os resultados mostram que a GAN supera todos os cenários comparados. Para mitigar dois problemas reconhecidos no treino das GAN, ou seja, instabilidade de treino e colapso de modo, é proposto o seguinte. Propomos uma generalização da GAN de erro quadrado médio (MSE GAN) da Wasserstein GAN com penalidade de gradiente (WGAN-GP), referida como VGAN (GAN baseado numa matriz V) para mitigar a instabilidade de treino. Além disso, propomos um novo critério para rastrear o modelo mais adequado durante o treino. Experiências com o MNIST e no conjunto de dados do manipulador robótico industrial mostram que o VGAN proposto supera outros modelos competitivos. A rede adversária generativa com consistência de ciclo (CycleGAN) visa lidar com o colapso de modo, uma condição em que o gerador produz pouca ou nenhuma variabilidade. Investigamos a distância fatiada de Wasserstein (SWD) na CycleGAN. O SWD é avaliado tanto no CycleGAN incondicional quanto no CycleGAN condicional com e sem mecanismos de compressão e excitação. Mais uma vez, dois conjuntos de dados são avaliados, ou seja, o MNIST e o conjunto de dados do manipulador robótico industrial. Os resultados mostram que o SWD tem menor custo computacional e supera o CycleGAN convencional.Machine learning based intelligent fault diagnosis often requires a balanced data set for yielding an acceptable performance. However, obtaining faulty data from industrial equipment is challenging, often resulting in an imbalance between data acquired in normal conditions and data acquired in the presence of faults. Data augmentation techniques are among the most promising approaches to mitigate such issue. Generative adversarial networks (GAN) are a type of generative model consisting of a generator module and a discriminator. Through adversarial learning between these modules, the optimised generator can produce synthetic patterns that can be used for data augmentation. We investigate whether GAN can be used as an oversampling tool to compensate for an imbalanced data set in an industrial robot fault diagnosis task. A series of experiments are performed to validate the feasibility of this approach. The approach is compared with six scenarios, including the classical oversampling method (SMOTE). Results show that GAN outperforms all the compared scenarios. To mitigate two recognised issues in GAN training, i.e., instability and mode collapse, the following is proposed. We proposed a generalization of both mean sqaure error (MSE GAN) and Wasserstein GAN with gradient penalty (WGAN-GP), referred to as VGAN (the V-matrix based GAN) to mitigate training instability. Also, a novel criterion is proposed to keep track of the most suitable model during training. Experiments on both the MNIST and the industrial robot data set show that the proposed VGAN outperforms other competitive models. Cycle consistency generative adversarial network (CycleGAN) is aiming at dealing with mode collapse, a condition where the generator yields little to none variability. We investigate the sliced Wasserstein distance (SWD) for CycleGAN. SWD is evaluated in both the unconditional CycleGAN and the conditional CycleGAN with and without squeeze-and-excitation mechanisms. Again, two data sets are evaluated, i.e., the MNIST and the industrial robot data set. Results show that SWD has less computational cost and outperforms conventional CycleGAN

    Aviation Safety/Automation Program Conference

    Get PDF
    The Aviation Safety/Automation Program Conference - 1989 was sponsored by the NASA Langley Research Center on 11 to 12 October 1989. The conference, held at the Sheraton Beach Inn and Conference Center, Virginia Beach, Virginia, was chaired by Samuel A. Morello. The primary objective of the conference was to ensure effective communication and technology transfer by providing a forum for technical interchange of current operational problems and program results to date. The Aviation Safety/Automation Program has as its primary goal to improve the safety of the national airspace system through the development and integration of human-centered automation technologies for aircraft crews and air traffic controllers

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    NASA Tech Briefs, December 1990

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    NASA Tech Briefs, November/December 1986, Special Edition

    Get PDF
    Topics: Computing: The View from NASA Headquarters; Earth Resources Laboratory Applications Software: Versatile Tool for Data Analysis; The Hypercube: Cost-Effective Supercomputing; Artificial Intelligence: Rendezvous with NASA; NASA's Ada Connection; COSMIC: NASA's Software Treasurehouse; Golden Oldies: Tried and True NASA Software; Computer Technical Briefs; NASA TU Services; Digital Fly-by-Wire

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    OBSERVER-BASED-CONTROLLER FOR INVERTED PENDULUM MODEL

    Get PDF
    This paper presents a state space control technique for inverted pendulum system. The system is a common classical control problem that has been widely used to test multiple control algorithms because of its nonlinear and unstable behavior. Full state feedback based on pole placement and optimal control is applied to the inverted pendulum system to achieve desired design specification which are 4 seconds settling time and 5% overshoot. The simulation and optimization of the full state feedback controller based on pole placement and optimal control techniques as well as the performance comparison between these techniques is described comprehensively. The comparison is made to choose the most suitable technique for the system that have the best trade-off between settling time and overshoot. Besides that, the observer design is analyzed to see the effect of pole location and noise present in the system
    • …
    corecore