398 research outputs found

    Diagnosability of discrete event systems using labeled Petri nets

    Get PDF
    In this paper, we focus on labeled Petri nets with silent transitions that may either correspond to fault events or to regular unobservable events. We address the problem of deriving a procedure to determine if a given net system is diagnosable, i.e., the occurrence of a fault event may be detected for sure after a finite observation. The proposed procedure is based on our previous results on the diagnosis of discrete-event systems modeled with labeled Petri nets, whose key notions are those of basis markings and minimal explanations, and is inspired by the diagnosability approach for finite state automata proposed by Sampath in 1995. In particular, we first give necessary and sufficient conditions for diagnosability. Then, we present a method to test diagnosability that is based on the analysis of two graphs that depend on the structure of the net, including the faults model, and the initial marking

    Supervisory Control and Analysis of Partially-observed Discrete Event Systems

    Get PDF
    Nowadays, a variety of real-world systems fall into discrete event systems (DES). In practical scenarios, due to facts like limited sensor technique, sensor failure, unstable network and even the intrusion of malicious agents, it might occur that some events are unobservable, multiple events are indistinguishable in observations, and observations of some events are nondeterministic. By considering various practical scenarios, increasing attention in the DES community has been paid to partially-observed DES, which in this thesis refer broadly to those DES with partial and/or unreliable observations. In this thesis, we focus on two topics of partially-observed DES, namely, supervisory control and analysis. The first topic includes two research directions in terms of system models. One is the supervisory control of DES with both unobservable and uncontrollable events, focusing on the forbidden state problem; the other is the supervisory control of DES vulnerable to sensor-reading disguising attacks (SD-attacks), which is also interpreted as DES with nondeterministic observations, addressing both the forbidden state problem and the liveness-enforcing problem. Petri nets (PN) are used as a reference formalism in this topic. First, we study the forbidden state problem in the framework of PN with both unobservable and uncontrollable transitions, assuming that unobservable transitions are uncontrollable. For ordinary PN subject to an admissible Generalized Mutual Exclusion Constraint (GMEC), an optimal on-line control policy with polynomial complexity is proposed provided that a particular subnet, called observation subnet, satisfies certain conditions in structure. It is then discussed how to obtain an optimal on-line control policy for PN subject to an arbitrary GMEC. Next, we still consider the forbidden state problem but in PN vulnerable to SD-attacks. Assuming the control specification in terms of a GMEC, we propose three methods to derive on-line control policies. The first two lead to an optimal policy but are computationally inefficient for large-size systems, while the third method computes a policy with timely response even for large-size systems but at the expense of optimality. Finally, we investigate the liveness-enforcing problem still assuming that the system is vulnerable to SD-attacks. In this problem, the plant is modelled as a bounded PN, which allows us to off-line compute a supervisor starting from constructing the reachability graph of the PN. Then, based on repeatedly computing a more restrictive liveness-enforcing supervisor under no attack and constructing a basic supervisor, an off-line method that synthesizes a liveness-enforcing supervisor tolerant to an SD-attack is proposed. In the second topic, we care about the verification of properties related to system security. Two properties are considered, i.e., fault-predictability and event-based opacity. The former is a property in the literature, characterizing the situation that the occurrence of any fault in a system is predictable, while the latter is a newly proposed property in the thesis, which describes the fact that secret events of a system cannot be revealed to an external observer within their critical horizons. In the case of fault-predictability, DES are modeled by labeled PN. A necessary and sufficient condition for fault-predictability is derived by characterizing the structure of the Predictor Graph. Furthermore, two rules are proposed to reduce the size of a PN, which allow us to analyze the fault-predictability of the original net by verifying that of the reduced net. When studying event-based opacity, we use deterministic finite-state automata as the reference formalism. Considering different scenarios, we propose four notions, namely, K-observation event-opacity, infinite-observation event-opacity, event-opacity and combinational event-opacity. Moreover, verifiers are proposed to analyze these properties

    Basis marking representation of Petri net reachability spaces and its application to the reachability problem

    Get PDF
    In this paper a compact representation of the reachability graph of a Petri net is proposed. The transition set of a Petri net is partitioned into the subsets of explicit and implicit transitions, in such a way that the subnet induced by implicit transitions does not contain directed cycles. The firing of implicit transitions can be abstracted so that the reachability set of the net can be completely characterized by a subset of reachable markings called basis makings. We show that to determine a max-cardinality-T_I basis partition is an NPhard problem, but a max-set-T_I basis partition can be determined in polynomial time. The generalized version of the marking reachability problem in a Petri net can be solved by a practically efficient algorithm based on the basis reachability graph. Finally this approach is further extended to unbounded nets

    Perfomance Analysis and Resource Optimisation of Critical Systems Modelled by Petri Nets

    Get PDF
    Un sistema crítico debe cumplir con su misión a pesar de la presencia de problemas de seguridad. Este tipo de sistemas se suele desplegar en entornos heterogéneos, donde pueden ser objeto de intentos de intrusión, robo de información confidencial u otro tipo de ataques. Los sistemas, en general, tienen que ser rediseñados después de que ocurra un incidente de seguridad, lo que puede conducir a consecuencias graves, como el enorme costo de reimplementar o reprogramar todo el sistema, así como las posibles pérdidas económicas. Así, la seguridad ha de ser concebida como una parte integral del desarrollo de sistemas y como una necesidad singular de lo que el sistema debe realizar (es decir, un requisito no funcional del sistema). Así pues, al diseñar sistemas críticos es fundamental estudiar los ataques que se pueden producir y planificar cómo reaccionar frente a ellos, con el fin de mantener el cumplimiento de requerimientos funcionales y no funcionales del sistema. A pesar de que los problemas de seguridad se consideren, también es necesario tener en cuenta los costes incurridos para garantizar un determinado nivel de seguridad en sistemas críticos. De hecho, los costes de seguridad puede ser un factor muy relevante ya que puede abarcar diferentes dimensiones, como el presupuesto, el rendimiento y la fiabilidad. Muchos de estos sistemas críticos que incorporan técnicas de tolerancia a fallos (sistemas FT) para hacer frente a las cuestiones de seguridad son sistemas complejos, que utilizan recursos que pueden estar comprometidos (es decir, pueden fallar) por la activación de los fallos y/o errores provocados por posibles ataques. Estos sistemas pueden ser modelados como sistemas de eventos discretos donde los recursos son compartidos, también llamados sistemas de asignación de recursos. Esta tesis se centra en los sistemas FT con recursos compartidos modelados mediante redes de Petri (Petri nets, PN). Estos sistemas son generalmente tan grandes que el cálculo exacto de su rendimiento se convierte en una tarea de cálculo muy compleja, debido al problema de la explosión del espacio de estados. Como resultado de ello, una tarea que requiere una exploración exhaustiva en el espacio de estados es incomputable (en un plazo prudencial) para sistemas grandes. Las principales aportaciones de esta tesis son tres. Primero, se ofrecen diferentes modelos, usando el Lenguaje Unificado de Modelado (Unified Modelling Language, UML) y las redes de Petri, que ayudan a incorporar las cuestiones de seguridad y tolerancia a fallos en primer plano durante la fase de diseño de los sistemas, permitiendo así, por ejemplo, el análisis del compromiso entre seguridad y rendimiento. En segundo lugar, se proporcionan varios algoritmos para calcular el rendimiento (también bajo condiciones de fallo) mediante el cálculo de cotas de rendimiento superiores, evitando así el problema de la explosión del espacio de estados. Por último, se proporcionan algoritmos para calcular cómo compensar la degradación de rendimiento que se produce ante una situación inesperada en un sistema con tolerancia a fallos

    INCREMENTAL FAULT DIAGNOSABILITY AND SECURITY/PRIVACY VERIFICATION

    Get PDF
    Dynamical systems can be classified into two groups. One group is continuoustime systems that describe the physical system behavior, and therefore are typically modeled by differential equations. The other group is discrete event systems (DES)s that represent the sequential and logical behavior of a system. DESs are therefore modeled by discrete state/event models.DESs are widely used for formal verification and enforcement of desired behaviors in embedded systems. Such systems are naturally prone to faults, and the knowledge about each single fault is crucial from safety and economical point of view. Fault diagnosability verification, which is the ability to deduce about the occurrence of all failures, is one of the problems that is investigated in this thesis. Another verification problem that is addressed in this thesis is security/privacy. The two notions currentstate opacity and current-state anonymity that lie within this category, have attracted great attention in recent years, due to the progress of communication networks and mobile devices.Usually, DESs are modular and consist of interacting subsystems. The interaction is achieved by means of synchronous composition of these components. This synchronization results in large monolithic models of the total DES. Also, the complex computations, related to each specific verification problem, add even more computational complexity, resulting in the well-known state-space explosion problem.To circumvent the state-space explosion problem, one efficient approach is to exploit the modular structure of systems and apply incremental abstraction. In this thesis, a unified abstraction method that preserves temporal logic properties and possible silent loops is presented. The abstraction method is incrementally applied on the local subsystems, and it is proved that this abstraction preserves the main characteristics of the system that needs to be verified.The existence of shared unobservable events means that ordinary incremental abstraction does not work for security/privacy verification of modular DESs. To solve this problem, a combined incremental abstraction and observer generation is proposed and analyzed. Evaluations show the great impact of the proposed incremental abstraction on diagnosability and security/privacy verification, as well as verification of generic safety and liveness properties. Thus, this incremental strategy makes formal verification of large complex systems feasible

    Supervisory Control and High-level Petri nets

    Get PDF
    The Supervisory Control Theory (SCT) (Ramadge & Wonham, 1989) was developed to provide a formal methodology for the automatic synthesis of controllers for Discrete Event Systems (DES). In this theory, a system, called a plant, is assumed to have uncontrollable behaviours which may violate some desired specifications. Hence, these behaviours have to be controlle
    • …
    corecore