1,551 research outputs found

    Combination of Noninvasive Approaches for General Assessment of Induction Motors

    Full text link
    [EN] There exists no single quantity able to diagnose all possible failures taking place in induction motors. Currents and vibrations monitoring are rather common in the industry, but each of these quantities alone can only detect some specific failures. Moreover, even for the specific faults that a quantity is supposed to detect, many problems may rise. As a consequence, a reliable and general diagnosis system cannot rely on a single quantity. On the other hand, it would be desirable to rely on quantities that can be measured in a noninvasive way, which is a crucial requirement in many industrial applications. This paper proposes a twofold method to detect electromechanical failures in induction motors. The method relies on analysis of currents (steady state + transient) combined with analysis of infrared data captured by using appropriate cameras. Each of these noninvasive techniques may provide complementary information that may be very useful to diagnose an enough wide range of failures. In the present paper, the detection of three illustrative faults is analyzed: broken rotor bars, cooling system problems and bearing failures. The results show the potential of the methodology that may be particularly suitable for large, expensive motors, where the prevention of eventual failures justifies the costs of such system, due to the catastrophic implications that these unexpected faults may have.Picazo-Rodenas, MJ.; Antonino-Daviu, J.; Climente Alarcon, V.; Royo, R.; Mota-Villar, A. (2015). Combination of Noninvasive Approaches for General Assessment of Induction Motors. IEEE Transactions on Industry Applications. 51(3):2172-2180. doi:10.1109/TIA.2014.2382880S2172218051

    Health Monitoring of Cracked Rotor Systems Using External Excitation Techniques

    Get PDF
    Cracked rotors present a significant safety and loss hazard in nearly every application of modern turbomachinery. This thesis focuses on the health monitoring, modeling, and analysis of machines with transverse breathing cracks, which open and close due to the self-weight of the rotor. After considering the modeling of cracked rotors, the thesis investigates an active structural health monitoring approach, focusing on the application of an active magnetic actuator to apply a specially designed external force excitation to the rotating shaft. Extensive experimental data has been collected and analyzed utilizing advanced diagnostic techniques. The presented results demonstrate that the use of a magnetic force actuator to apply external excitation has potential in the diagnostics of cracked rotors. The observed unique crack signatures demonstrate the ability of the method for early diagnosis of transverse rotor crack

    Health Monitoring of Cracked Rotor Systems Using External Excitation Techniques

    Get PDF
    Cracked rotors present a significant safety and loss hazard in nearly every application of modern turbomachinery. This thesis focuses on the health monitoring, modeling, and analysis of machines with transverse breathing cracks, which open and close due to the self-weight of the rotor. After considering the modeling of cracked rotors, the thesis investigates an active structural health monitoring approach, focusing on the application of an active magnetic actuator to apply a specially designed external force excitation to the rotating shaft. Extensive experimental data has been collected and analyzed utilizing advanced diagnostic techniques. The presented results demonstrate that the use of a magnetic force actuator to apply external excitation has potential in the diagnostics of cracked rotors. The observed unique crack signatures demonstrate the ability of the method for early diagnosis of transverse rotor crack

    Magnetic Flux Analysis for the Condition Monitoring of Electric Machines: A Review

    Full text link
    [EN] Magnetic flux analysis is a condition monitoring technique that is drawing the interest of many researchers and motor manufacturers. The great enhancements and reduction in the costs and dimensions of the required sensors, the development of advanced signal processing techniques that are suitable for flux data analysis, along with other inherent advantages provided by this technology are relevant aspects that have allowed the proliferation of flux-based techniques. This paper reviews the most recent scientific contributions related to the development and application of flux-based methods for the monitoring of rotating electric machines. Particularly, aspects related to the main sensors used to acquire magnetic flux signals as well as the leading signal processing and classification techniques are commented. The discussion is focused on the diagnosis of different types of faults in the most common rotating electric machines used in industry, namely: squirrel cage induction machines (SCIM), wound rotor induction machines (WRIM), permanent magnet machines (PMM) and wound field synchronous machines (WFSM). A critical insight of the techniques developed in the area is provided and several open challenges are also discussed.This work was supported by the Spanish 'Ministerio de Ciencia Innovación y Universidades' and FEDER program in the framework of the "Proyectos de I+D de Generación de Conocimiento del Programa Estatal de Generación de Conocimiento y Fortalecimiento Científico y Tecnologico del Sistema de I+D+i, Subprograma Estatal de Generacion de Conocimiento" reference PGC2018-095747-B-I00 and by the Consejo Nacional de Ciencia y Tecnología under CONACyT Scholarship with key code 2019-000037-02NACF. Paper no. TII-20-5308.Zamudio-Ramírez, I.; Osornio-Rios, RA.; Antonino-Daviu, J.; Razik, H.; Romero-Troncoso, RDJ. (2022). Magnetic Flux Analysis for the Condition Monitoring of Electric Machines: A Review. IEEE Transactions on Industrial Informatics. 18(5):2895-2908. https://doi.org/10.1109/TII.2021.30705812895290818

    Wireless Hybrid Vehicle Three-Phase Motor Diagnosis Using Z-Freq Due to Unbalance Fault

    Get PDF
    Online diagnostics of three phase motor rotor faults of hybrid vehicle can be identified using a method called machine learning. Unfortunately, there is still a constraint in achieving a high success rate because a huge volume of training data is required. These faults were represented on its frequency content throughout the Fast Fourier Transform (FFT) algorithm to observe data acquired from multi-signal sensors. At that point, these failure-induced faults studies were improved using an enhanced statistical frequency-based analysis named Z-freq to optimize the study. This analysis is an investigation of the frequency domain of data acquired from the turbine blade after it runs under a specific condition. During the experiment, the faults were simulated by equipment with all those four conditions including normal mode. The failure induced by fault signals from static, coupled and dynamic were measured using high sensitivity, space-saving and a durable piezo-based sensor called a wireless accelerometer. The obtained result and analysis showed a significant pattern in the coefficient value and distribution of Z-freq data scattered for all flaws. Finally, the simulation and experimental output were verified and validated in a series of performance metrics tests using accuracy, sensitivity, and specificity for prediction purposes. This outcome has a great prospect to diagnose and monitor hybrid electric motor wirelessly. &nbsp

    Wireless Hybrid Vehicle Three-Phase Motor Diagnosis Using Z-Freq Due to Unbalance Fault

    Get PDF
    Online diagnostics of three phase motor rotor faults of hybrid vehicle can be identified using a method called machine learning. Unfortunately, there is still a constraint in achieving a high success rate because a huge volume of training data is required. These faults were represented on its frequency content throughout the Fast Fourier Transform (FFT) algorithm to observe data acquired from multi-signal sensors. At that point, these failure-induced faults studies were improved using an enhanced statistical frequency-based analysis named Z-freq to optimize the study. This analysis is an investigation of the frequency domain of data acquired from the turbine blade after it runs under a specific condition. During the experiment, the faults were simulated by equipment with all those four conditions including normal mode. The failure induced by fault signals from static, coupled and dynamic were measured using high sensitivity, space-saving and a durable piezo-based sensor called a wireless accelerometer. The obtained result and analysis showed a significant pattern in the coefficient value and distribution of Z-freq data scattered for all flaws. Finally, the simulation and experimental output were verified and validated in a series of performance metrics tests using accuracy, sensitivity, and specificity for prediction purposes. This outcome has a great prospect to diagnose and monitor hybrid electric motor wirelessly. &nbsp
    corecore