2,081 research outputs found

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Data-driven extraction and analysis of repairable fault trees from time series data

    Get PDF
    Fault tree analysis is a probability-based technique for estimating the risk of an undesired top event, typically a system failure. Traditionally, building a fault tree requires involvement of knowledgeable experts from different fields, relevant for the system under study. Nowadays’ systems, however, integrate numerous Internet of Things (IoT) devices and are able to generate large amounts of data that can be utilized to extract fault trees that reflect the true fault-related behavior of the corresponding systems. This is especially relevant as systems typically change their behaviors during their lifetimes, rendering initial fault trees obsolete. For this reason, we are interested in extracting fault trees from data that is generated from systems during their lifetimes. We present DDFTAnb algorithm for learning fault trees of systems using time series data from observed faults, enhanced with Naïve Bayes classifiers for estimating the future fault-related behavior of the system for unobserved combinations of basic events, where the state of the top event is unknown. Our proposed algorithm extracts repairable fault trees from multinomial time series data, classifies the top event for the unseen combinations of basic events, and then uses proxel-based simulation to estimate the system’s reliability. We, furthermore, assess the sensitivity of our algorithm to different percentages of data availabilities. Results indicate DDFTAnb’s high performance for low levels of data availability, however, when there are sufficient or high amounts of data, there is no need for classifying the top event

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    On cost-effective reuse of components in the design of complex reconfigurable systems

    Get PDF
    Design strategies that benefit from the reuse of system components can reduce costs while maintaining or increasing dependability—we use the term dependability to tie together reliability and availability. D3H2 (aDaptive Dependable Design for systems with Homogeneous and Heterogeneous redundancies) is a methodology that supports the design of complex systems with a focus on reconfiguration and component reuse. D3H2 systematizes the identification of heterogeneous redundancies and optimizes the design of fault detection and reconfiguration mechanisms, by enabling the analysis of design alternatives with respect to dependability and cost. In this paper, we extend D3H2 for application to repairable systems. The method is extended with analysis capabilities allowing dependability assessment of complex reconfigurable systems. Analysed scenarios include time-dependencies between failure events and the corresponding reconfiguration actions. We demonstrate how D3H2 can support decisions about fault detection and reconfiguration that seek to improve dependability while reducing costs via application to a realistic railway case study

    Activity Report 1996-97

    Get PDF

    Fast Damage Recovery in Robotics with the T-Resilience Algorithm

    Full text link
    Damage recovery is critical for autonomous robots that need to operate for a long time without assistance. Most current methods are complex and costly because they require anticipating each potential damage in order to have a contingency plan ready. As an alternative, we introduce the T-resilience algorithm, a new algorithm that allows robots to quickly and autonomously discover compensatory behaviors in unanticipated situations. This algorithm equips the robot with a self-model and discovers new behaviors by learning to avoid those that perform differently in the self-model and in reality. Our algorithm thus does not identify the damaged parts but it implicitly searches for efficient behaviors that do not use them. We evaluate the T-Resilience algorithm on a hexapod robot that needs to adapt to leg removal, broken legs and motor failures; we compare it to stochastic local search, policy gradient and the self-modeling algorithm proposed by Bongard et al. The behavior of the robot is assessed on-board thanks to a RGB-D sensor and a SLAM algorithm. Using only 25 tests on the robot and an overall running time of 20 minutes, T-Resilience consistently leads to substantially better results than the other approaches

    A survey on distributed filtering and fault detection for sensor networks

    Get PDF
    Copyright © 2014 Hongli Dong et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research on large-scale networked systems has gained an increasing attention from multiple disciplines including engineering, computer science, and mathematics. Lying in the core part of the area are the distributed estimation and fault detection problems that have recently been attracting growing research interests. In particular, an urgent need has arisen to understand the effects of distributed information structures on filtering and fault detection in sensor networks. In this paper, a bibliographical review is provided on distributed filtering and fault detection problems over sensor networks. The algorithms employed to study the distributed filtering and detection problems are categorised and then discussed. In addition, some recent advances on distributed detection problems for faulty sensors and fault events are also summarized in great detail. Finally, we conclude the paper by outlining future research challenges for distributed filtering and fault detection for sensor networks. © 2014 Hongli Dong et al

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis
    corecore