56 research outputs found

    An attribute oriented induction based methodology to aid in predictive maintenance: anomaly detection, root cause analysis and remaining useful life

    Get PDF
    Predictive Maintenance is the maintenance methodology that provides the best performance to industrial organisations in terms of time, equipment effectiveness and economic savings. Thanks to the recent advances in technology, capturing process data from machines and sensors attached to them is no longer a challenging task, and can be used to perform complex analyses to help with maintenance requirements. On the other hand, knowledge of domain experts can be combined with information extracted from the machines’ assets to provide a better understanding of the underlying phenomena. This thesis proposes a methodology to assess the different requirements in relation to Predictive Maintenance. These are (i) Anomaly Detection (AD), (ii) Root Cause Analysis (RCA) and (iii) estimation of Remaining Useful Life (RUL). Multiple machine learning techniques and algorithms can be found in the literature to carry out the calculation of these requirements. In this thesis, the Attribute Oriented Induction (AOI) algorithm has been adopted and adapted to the Predictive Maintenance methodology needs. AOI has the capability of performing RCA, but also possibility to be used as an AD system. With the purpose of performing Predictive Maintenance, a variant, Repetitive Weighted Attribute Oriented Induction (ReWAOI ), has been proposed. ReWAOI has the ability to combine information extracted from the machine with the knowledge of experts in the field to describe its behaviour, and derive the Predictive Maintenance requirements. Through the use of ReWAOI, one-dimensional quantification function from multidimensional data can be obtained. This function is correlated with the evolution of the machine’s wear over time, and thus, the estimation of AD and RUL has been accomplished. In addition, the ReWAOI helps in the description of failure root causes. The proposed contributions of the thesis have been validated in different scenarios, both emulated but also real industrial case studies.Enpresei errendimendu hoberena eskaintzen dien mantentze metodologia Mantentze Prediktiboa da, denbora, ekipamenduen eraginkortasun, eta ekonomia alorretan. Azken urteetan eman diren teknologia aurrerapenei esker, makina eta sensoreetatiko datuen eskuraketa jada ez da erronka, eta manentenimendurako errekerimenduak betetzen laguntzeko analisi konplexuak egiteko erabili daitezke. Bestalde, alorreko jakintsuen ezagutza makinetatik eskuratzen den informazioarekin bateratu daiteke, gertakarien gaineko ulermena hobea izan dadin. Tesi honetan metodologia berri bat proposatzen da, Mantentze Prediktiboarekin lotura duten errekerimenduak betearazten dituena. Ondorengoak dira: (i) Anomalien Detekzioa (AD), (ii) Erro-Kausaren Analisia (RCA), eta (iii) Gainontzeko Bizitza Erabilgarriaren (RUL) estimazioa. Errekerimendu hauen kalkulua burutzeko, ikasketa automatikoko hainbat algoritmo aurkitu daitezke literaturan. Tesi honetan Attribute Oriented Induction (AOI) algoritmoa erabili eta egokitu da Mantentze Prediktiboaren beharretara. AOI-k RCA estimatzeko ahalmena dauka, baina AD kalkulatzeko erabilia izan daiteke baita ere. Mantentze Prediktiboa aplikatzeko helburuarekin, AOI-rentzat aldaera bat proposatu da: Repetitive Weighted Attribute Oriented Induction (ReWAOI ). ReWAOI-k alorreko jakintsuen ezagutza eta makinetatik eskuratutako informazioa bateratzeko ahalmena dauka, makinen portaera deskribatu ahal izateko, eta horrela, Mantentze Prediktiboaren errekerimenduak betetzeko. ReWAOI-ren erabileraren ondorioz, dimentsio bakarreko kuantifikazio funtzioa eskuratu daiteke hainbat dimentsiotako datuetatik. Funztio hau denboran zehar makinak duen higadurarekin erlazionatuta dago, eta beraz, AD eta RUL-aren estimazioak burutu daitezke. Horretaz gain, ReWAOI-k hutsegiteen erro-kausaren deskribapenak eskaintzeko ahalmena dauka. Tesian proposatutako kontribuzioak hainbat erabilpen kasutan balioztatu dira, batzuk emulatuak, eta beste batzuk industria alorreko kasu errealak izanik.El Mantenimiento Predictivo es la metodología de mantenimiento que mejor rendimiento aporta a las organizaciones industriales en cuestiones de tiempo, eficiencia del equipamiento, y rendimiento económico. Gracias a los recientes avances en tecnología, la captura de datos de proceso de máquinas y sensores ya no es un reto, y puede utilizarse para realizar complejos análisis que ayuden con el cumplimiento de los requerimientos de mantenimiento. Por otro lado, el conocimiento de expertos de dominio puede ser combinado con la información extraída de las máquinas para otorgar una mejor comprensión de los fenómenos ocurridos. Esta tesis propone una metodología que cumple con diferentes requerimientos establecidos para el Mantenimiento Predictivo. Estos son (i) la Detección de Anomalías (AD), el Análisis de la Causa-Raíz (RCA) y (iii) la estimación de la Vida Útil Remanente. Pueden encontrarse múltiples técnicas y algoritmos de aprendizaje automático en la literatura para llevar a cabo el cálculo de estos requerimientos. En esta tesis, el algoritmo Attribute Oriented Induction (AOI) ha sido seleccionado y adaptado a las necesidades que establece el Mantenimiento Predictivo. AOI tiene la capacidad de estimar el RCA, pero puede usarse, también, para el cálculo de la AD. Con el propósito de aplicar Mantenimiento Predictivo, se ha propuesto una variante del algoritmo, denominada Repetitive Weighted Attribute Oriented Induction (ReWAOI ). ReWAOI tiene la capacidad de combinar información extraída de la máquina y conocimiento de expertos de área para describir su comportamiento, y así, poder cumplir con los requerimientos del Mantenimiento Predictivo. Mediante el uso de ReWAOI, se puede obtener una función de cuantificación unidimensional, a partir de datos multidimensionales. Esta función está correlacionada con la evolución de la máquina en el tiempo, y por lo tanto, la estimación de AD y RUL puede ser realizada. Además, ReWAOI facilita la descripción de las causas-raíz de los fallos producidos. Las contribuciones propuestas en esta tesis han sido validadas en distintos escenarios, tanto en casos de uso industriales emulados como reales

    Advanced Process Monitoring for Industry 4.0

    Get PDF
    This book reports recent advances on Process Monitoring (PM) to cope with the many challenges raised by the new production systems, sensors and “extreme data” conditions that emerged with Industry 4.0. Concepts such as digital-twins and deep learning are brought to the PM arena, pushing forward the capabilities of existing methodologies to handle more complex scenarios. The evolution of classical paradigms such as Latent Variable modeling, Six Sigma and FMEA are also covered. Applications span a wide range of domains such as microelectronics, semiconductors, chemicals, materials, agriculture, as well as the monitoring of rotating equipment, combustion systems and membrane separation processes

    Predictive Maintenance of Critical Equipment for Floating Liquefied Natural Gas Liquefaction Process

    Get PDF
    Predictive Maintenance of Critical Equipment for Liquefied Natural Gas Liquefaction Process Meeting global energy demand is a massive challenge, especially with the quest of more affinity towards sustainable and cleaner energy. Natural gas is viewed as a bridge fuel to a renewable energy. LNG as a processed form of natural gas is the fastest growing and cleanest form of fossil fuel. Recently, the unprecedented increased in LNG demand, pushes its exploration and processing into offshore as Floating LNG (FLNG). The offshore topsides gas processes and liquefaction has been identified as one of the great challenges of FLNG. Maintaining topside liquefaction process asset such as gas turbine is critical to profitability and reliability, availability of the process facilities. With the setbacks of widely used reactive and preventive time-based maintenances approaches, to meet the optimal reliability and availability requirements of oil and gas operators, this thesis presents a framework driven by AI-based learning approaches for predictive maintenance. The framework is aimed at leveraging the value of condition-based maintenance to minimises the failures and downtimes of critical FLNG equipment (Aeroderivative gas turbine). In this study, gas turbine thermodynamics were introduced, as well as some factors affecting gas turbine modelling. Some important considerations whilst modelling gas turbine system such as modelling objectives, modelling methods, as well as approaches in modelling gas turbines were investigated. These give basis and mathematical background to develop a gas turbine simulated model. The behaviour of simple cycle HDGT was simulated using thermodynamic laws and operational data based on Rowen model. Simulink model is created using experimental data based on Rowen’s model, which is aimed at exploring transient behaviour of an industrial gas turbine. The results show the capability of Simulink model in capture nonlinear dynamics of the gas turbine system, although constraint to be applied for further condition monitoring studies, due to lack of some suitable relevant correlated features required by the model. AI-based models were found to perform well in predicting gas turbines failures. These capabilities were investigated by this thesis and validated using an experimental data obtained from gas turbine engine facility. The dynamic behaviours gas turbines changes when exposed to different varieties of fuel. A diagnostics-based AI models were developed to diagnose different gas turbine engine’s failures associated with exposure to various types of fuels. The capabilities of Principal Component Analysis (PCA) technique have been harnessed to reduce the dimensionality of the dataset and extract good features for the diagnostics model development. Signal processing-based (time-domain, frequency domain, time-frequency domain) techniques have also been used as feature extraction tools, and significantly added more correlations to the dataset and influences the prediction results obtained. Signal processing played a vital role in extracting good features for the diagnostic models when compared PCA. The overall results obtained from both PCA, and signal processing-based models demonstrated the capabilities of neural network-based models in predicting gas turbine’s failures. Further, deep learning-based LSTM model have been developed, which extract features from the time series dataset directly, and hence does not require any feature extraction tool. The LSTM model achieved the highest performance and prediction accuracy, compared to both PCA-based and signal processing-based the models. In summary, it is concluded from this thesis that despite some challenges related to gas turbines Simulink Model for not being integrated fully for gas turbine condition monitoring studies, yet data-driven models have proven strong potentials and excellent performances on gas turbine’s CBM diagnostics. The models developed in this thesis can be used for design and manufacturing purposes on gas turbines applied to FLNG, especially on condition monitoring and fault detection of gas turbines. The result obtained would provide valuable understanding and helpful guidance for researchers and practitioners to implement robust predictive maintenance models that will enhance the reliability and availability of FLNG critical equipment.Petroleum Technology Development Funds (PTDF) Nigeri

    Fault Diagnosis Of Sensor And Actuator Faults In Multi-Zone Hvac Systems

    Get PDF
    Globally, the buildings sector accounts for 30% of the energy consumption and more than 55% of the electricity demand. Specifically, the Heating, Ventilation, and Air Conditioning (HVAC) system is the most extensively operated component and it is responsible alone for 40% of the final building energy usage. HVAC systems are used to provide healthy and comfortable indoor conditions, and their main objective is to maintain the thermal comfort of occupants with minimum energy usage. HVAC systems include a considerable number of sensors, controlled actuators, and other components. They are at risk of malfunctioning or failure resulting in reduced efficiency, potential interference with the execution of supervision schemes, and equipment deterioration. Hence, Fault Diagnosis (FD) of HVAC systems is essential to improve their reliability, efficiency, and performance, and to provide preventive maintenance. In this thesis work, two neural network-based methods are proposed for sensor and actuator faults in a 3-zone HVAC system. For sensor faults, an online semi-supervised sensor data validation and fault diagnosis method using an Auto-Associative Neural Network (AANN) is developed. The method is based on the implementation of Nonlinear Principal Component Analysis (NPCA) using a Back-Propagation Neural Network (BPNN) and it demonstrates notable capability in sensor fault and inaccuracy correction, measurement noise reduction, missing sensor data replacement, and in both single and multiple sensor faults diagnosis. In addition, a novel on-line supervised multi-model approach for actuator fault diagnosis using Convolutional Neural Networks (CNNs) is developed for single actuator faults. It is based a data transformation in which the 1-dimensional data are configured into a 2-dimensional representation without the use of advanced signal processing techniques. The CNN-based actuator fault diagnosis approach demonstrates improved performance capability compared with the commonly used Machine Learning-based algorithms (i.e., Support Vector Machine and standard Neural Networks). The presented schemes are compared with other commonly used HVAC fault diagnosis methods for benchmarking and they are proven to be superior, effective, accurate, and reliable. The proposed approaches can be applied to large-scale buildings with additional zones

    Text Similarity Between Concepts Extracted from Source Code and Documentation

    Get PDF
    Context: Constant evolution in software systems often results in its documentation losing sync with the content of the source code. The traceability research field has often helped in the past with the aim to recover links between code and documentation, when the two fell out of sync. Objective: The aim of this paper is to compare the concepts contained within the source code of a system with those extracted from its documentation, in order to detect how similar these two sets are. If vastly different, the difference between the two sets might indicate a considerable ageing of the documentation, and a need to update it. Methods: In this paper we reduce the source code of 50 software systems to a set of key terms, each containing the concepts of one of the systems sampled. At the same time, we reduce the documentation of each system to another set of key terms. We then use four different approaches for set comparison to detect how the sets are similar. Results: Using the well known Jaccard index as the benchmark for the comparisons, we have discovered that the cosine distance has excellent comparative powers, and depending on the pre-training of the machine learning model. In particular, the SpaCy and the FastText embeddings offer up to 80% and 90% similarity scores. Conclusion: For most of the sampled systems, the source code and the documentation tend to contain very similar concepts. Given the accuracy for one pre-trained model (e.g., FastText), it becomes also evident that a few systems show a measurable drift between the concepts contained in the documentation and in the source code.</p

    The blessings of explainable AI in operations & maintenance of wind turbines

    Get PDF
    Wind turbines play an integral role in generating clean energy, but regularly suffer from operational inconsistencies and failures leading to unexpected downtimes and significant Operations & Maintenance (O&M) costs. Condition-Based Monitoring (CBM) has been utilised in the past to monitor operational inconsistencies in turbines by applying signal processing techniques to vibration data. The last decade has witnessed growing interest in leveraging Supervisory Control & Acquisition (SCADA) data from turbine sensors towards CBM. Machine Learning (ML) techniques have been utilised to predict incipient faults in turbines and forecast vital operational parameters with high accuracy by leveraging SCADA data and alarm logs. More recently, Deep Learning (DL) methods have outperformed conventional ML techniques, particularly for anomaly prediction. Despite demonstrating immense promise in transitioning to Artificial Intelligence (AI), such models are generally black-boxes that cannot provide rationales behind their predictions, hampering the ability of turbine operators to rely on automated decision making. We aim to help combat this challenge by providing a novel perspective on Explainable AI (XAI) for trustworthy decision support.This thesis revolves around three key strands of XAI – DL, Natural Language Generation (NLG) and Knowledge Graphs (KGs), which are investigated by utilising data from an operational turbine. We leverage DL and NLG to predict incipient faults and alarm events in the turbine in natural language as well as generate human-intelligible O&M strategies to assist engineers in fixing/averting the faults. We also propose specialised DL models which can predict causal relationships in SCADA features as well as quantify the importance of vital parameters leading to failures. The thesis finally culminates with an interactive Question- Answering (QA) system for automated reasoning that leverages multimodal domain-specific information from a KG, facilitating engineers to retrieve O&M strategies with natural language questions. By helping make turbines more reliable, we envisage wider adoption of wind energy sources towards tackling climate change

    Identifying and Detecting Attacks in Industrial Control Systems

    Get PDF
    The integrity of industrial control systems (ICS) found in utilities, oil and natural gas pipelines, manufacturing plants and transportation is critical to national wellbeing and security. Such systems depend on hundreds of field devices to manage and monitor a physical process. Previously, these devices were specific to ICS but they are now being replaced by general purpose computing technologies and, increasingly, these are being augmented with Internet of Things (IoT) nodes. Whilst there are benefits to this approach in terms of cost and flexibility, it has attracted a wider community of adversaries. These include those with significant domain knowledge, such as those responsible for attacks on Iran’s Nuclear Facilities, a Steel Mill in Germany, and Ukraine’s power grid; however, non specialist attackers are becoming increasingly interested in the physical damage it is possible to cause. At the same time, the approach increases the number and range of vulnerabilities to which ICS are subject; regrettably, conventional techniques for analysing such a large attack space are inadequate, a cause of major national concern. In this thesis we introduce a generalisable approach based on evolutionary multiobjective algorithms to assist in identifying vulnerabilities in complex heterogeneous ICS systems. This is both challenging and an area that is currently lacking research. Our approach has been to review the security of currently deployed ICS systems, and then to make use of an internationally recognised ICS simulation testbed for experiments, assuming that the attacking community largely lack specific ICS knowledge. Using the simulator, we identified vulnerabilities in individual components and then made use of these to generate attacks. A defence against these attacks in the form of novel intrusion detection systems were developed, based on a range of machine learning models. Finally, this was further subject to attacks created using the evolutionary multiobjective algorithms, demonstrating, for the first time, the feasibility of creating sophisticated attacks against a well-protected adversary using automated mechanisms

    Data Analytics for Automated Near Real Time Detection of Blockages in Smart Wastewater Systems

    Get PDF
    Blockage events account for a substantial portion of the reported failures in the wastewater network, causing flooding, loss of service, environmental pollution and significant clean-up costs. Increasing telemetry in Combined Sewer Overflows (CSOs) provides the opportunity for near real-time data-driven modelling of the sewer network. The research work presented in this thesis describes the development and testing of a novel system, designed for the automatic detection of blockages and other unusual events in near real-time. The methodology utilises an Evolutionary Artificial Neural Network (EANN) model for short term CSO level predictions and Statistical Process Control (SPC) techniques to analyse unusual CSO level behaviour. The system is designed to mimic the work of a trained, experience human technician in determining if a blockage event has occurred. The detection system has been applied to real blockage events from a UK wastewater network. The results obtained illustrate that the methodology can identify different types of blockage events in a reliable and timely manner, and with a low number of false alarms. In addition, a model has been developed for the prediction of water levels in a CSO chamber and the generation of alerts for upcoming spill events. The model consists of a bi-model committee evolutionary artificial neural network (CEANN), composed of two EANN models optimised for wet and dry weather, respectively. The models are combined using a non-linear weighted averaging approach to overcome bias arising from imbalanced data. Both methodologies are designed to be generic and self-learning, thus they can be applied to any CSO location, without requiring input from a human operator. It is envisioned that the technology will allow utilities to respond proactively to developing blockages events, thus reducing potential harm to the sewer network and the surrounding environment
    corecore