60 research outputs found

    Proceedings of the International Workshop on the Design of Dependable Critical Systems “Hardware, Software, and Human Factors in Dependable System Design”

    Get PDF
    As technology advances, technical systems become increasingly complex not only in terms of functionality and structure but also regarding their handling and operation. In order to keep such complex safety-critical and mission-critical systems controllable, they are required to be highly dependable. Since the costs for designing, testing, operating, and maintaining such systems significantly increase with the dependability requirements, new design approaches for the cost effective development and production of dependable systems are required, covering hardware, software, and human factor aspects. This workshop aims at presenting and discussing the latest developments in this field, spanning the entire spectrum from theoretical works on system architecture and dependability measures to practical applications in safety and mission critical domains

    Automating Home Appliances For Elderly and Impaired People: The B-Live Approach

    Get PDF
    DETIThis paper describes the B-Live approach for automating home appliances for elderly and impaired people. This system has been developed at Micro I/O for enhancing the quality of life and the independence of its potential users. The target application is the retrofitting of common dwellings. The paper introduces the motivation for the B-Live system and presents a survey on current Smart Home projects and endeavours. The B-Live system is described and details on its software, hardware and communications architecture are provided. A survey of the supported appliances and interfaces is presented as well as a description of the B-live configuration and operation procedures. The suitableness of the B-Live system to improve the autonomy of the envisaged users was informally evaluated by C4, C5 and C6 patients at the CMRRC Rovisco Pais demonstrator. The conclusion is that the system has a short learning curve and can cope with the requirements of its potential users

    Experimental Study under Real-World Conditions to Develop Fault Detection for Automated Vehicles

    Get PDF
    Abstract Automated vehicles can contribute to the improvement of transportation through their high capacity, increased safety, low emission and high efficiency. However, unstable conditions of automated mobile systems, which include automated vehicles and mobile robots) can cause serious problems, andthus, automated mobile system requiresto be highly reliable. The objective of this research is to develop on analgorith mfor detection faults (unstable condition) in an automated mobile system and to improve the overall reliability of this system. In this study, we in itially stored and updated a few patterns of data constellations under normal and unstable conditions for fault identification through real-world experiments. Multiple experiments were performed in a public urban area (with course distance per set beingapproximately1.1[km]), where several pedestrians, bicycles, and other robots were also present. The method used for detecting faults utilizes Mahalanobis distance, correlat ion coefficient, and linearization in order to enhance the accuracy of detecting faults;further, because real-world experimental conditions vary frequently,it is essential for the proposed method to be robust undervarious conditions. The ma in feature of this study is that it involves the use of experimental results obtained under real-world conditions, to develop a fault detection algorithm and evaluate its validity. In addition, simu lations were performed using the real-world experimental data, wh ich includes newly logged experimental data after the algorithm was developed in order to evaluate the validity of the proposed algorithm. The simulat ion results show that the proposed algorithm detects faults accurately, thus, they prove its validity

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Medical robots with potential applications in participatory and opportunistic remote sensing: A review

    Get PDF
    Among numerous applications of medical robotics, this paper concentrates on the design, optimal use and maintenance of the related technologies in the context of healthcare, rehabilitation and assistive robotics, and provides a comprehensive review of the latest advancements in the foregoing field of science and technology, while extensively dealing with the possible applications of participatory and opportunistic mobile sensing in the aforementioned domains. The main motivation for the latter choice is the variety of such applications in the settings having partial contributions to functionalities such as artery, radiosurgery, neurosurgery and vascular intervention. From a broad perspective, the aforementioned applications can be realized via various strategies and devices benefiting from detachable drives, intelligent robots, human-centric sensing and computing, miniature and micro-robots. Throughout the paper tens of subjects, including sensor-fusion, kinematic, dynamic and 3D tissue models are discussed based on the existing literature on the state-of-the-art technologies. In addition, from a managerial perspective, topics such as safety monitoring, security, privacy and evolutionary optimization of the operational efficiency are reviewed

    Advancing automation and robotics technology for the Space Station and for the US economy, volume 2

    Get PDF
    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Technical Report, Volume 2, provides background information on automation and robotics technologies and their potential and documents: the relevant aspects of Space Station design; representative examples of automation and robotics; applications; the state of the technology and advances needed; and considerations for technology transfer to U.S. industry and for space commercialization

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Development of a new robust hybrid automata algorithm based on surface electromyography (SEMG) signal for instrumented wheelchair control

    Get PDF
    Instrumented wheelchair operates based on surface electromyography (sEMG) is one of alternative to assist impairment person for mobility. SEMG is chosen due to good in accuracy and easier preparation to place the electrodes. Motor neuron transmit electrical potential to muscle fibre to perform isometric, concentric or eccentric contraction. These electrical changes that is called Motor Unit Action Potential (MUAP) can be acquired and amplified by electrodes located on targeted muscles changes can be recorded and analysed using sEMG devices. But, sEMG device cost up to USD 2,100 for a sEMG data acquisition device that available on market is one of the drawback to be used by impairment person that most of them has financial problem due to unable to work like before. In addition, it is a closed source system that cannot be modified to improve the accuracy and adding more features. Open source system such as Arduino has limitation of specifications that makes able to apply nonpattern recognition control methods which is simpler and easier compared to pattern recognition. However, classification accuracy is lower than pattern recognition and it cannot be applied to higher number participants from different background and gender. This research aims are to develop an open-source Arduino based sEMG data acquisition device by formulating hybrid automata algorithm to differentiate MUAP activity during wheelchair propulsion. Addition of hybrid automata algorithm to run pattern and non-pattern recognition based control methods is an advantage to increase accuracy in differentiating forward stroke or hand return activity. Electrodes are placed on Biceps (BIC), Triceps (TRI), Extensor (EXT), Flexor (FIX) and MUAP activity recorded for 30 healthy persons. Then, experiment result was validated with simulation result using OpenSim biomedical modelling software. Mean, standard deviation (SD), confidence interval (CI) and maximum point different (MPD) of MUAP were calculated and to be used as thresholds for non-pattern recognition control method in method selection experiment. Meanwhile, pattern recognition is using Probability Density Function (PDF) to determine MUAP according to type of activities. Total of ten control methods determined from population and individual data were tested against another 10 healthy persons to evaluate the algorithm performance. Assessment of each control method done by misclassification matrix looking at True Positive (TP) and False Negative (FN) of power assist system activation period. Developed sEMG data acquisition device that is operated by Arduino MEGA 2560 and Myoware muscle sensors with sampling rate of above 400Hz successfully recorded MUAP from four arm muscles. Furthermore, 2.5 ms of average data latency for device to record, analyse, validate and creating commands to activate the power assist system. Data obtained from the device shows that most active muscle during wheelchair propulsion is TRI, followed by BIC and matched to OpenSim simulation result. In method selection experiment, 96.28% of average accuracy was achieved and different control methods were selected by misclassification matrix for each of persons. This method would be a control method to activate power assist system and selected based on conditions set in the algorithm. These findings indicated that open source Arduino board is capable of running real time pattern, non-pattern recognition based control methods by producing classification accuracy up to 99.48% even though it is known as just a microcontroller that has limitation to run complex classifiers. At the same time, a device that cost less than USD200 has 400Hz of sampling rate is as good as closed source device that is come with expensive price tag to own it. Based on algorithm evaluation, it shows that one control method couldn’t fit to all persons as per proven in method selection experiment. Different person has different control method that suit them the most. Lastly, BIC and TRI can be reference muscles to activate assistive device in instrumented wheelchair that is using propulsion as indication
    • …
    corecore