31,472 research outputs found

    Integrated system fault diagnostics utilising digraph and fault tree-based approaches

    Get PDF
    With the growing intolerance to failures within systems, the issue of fault diagnosis has become ever prevalent. Information concerning these possible failures can help to minimise the disruption to the functionality of the system by allowing quick rectification. Traditional approaches to fault diagnosis within engineering systems have focused on sequential testing procedures and real time mechanisms. Both methods have been predominantly limited to single fault causes. Latest approaches also consider the issue of multiple faults in reflection to the characteristics of modern day systems designed for high reliability. In addition, a diagnostic capability is required in real time and for changeable system functionality. This paper focuses on two approaches which have been developed to cater for the demands of diagnosis within current engineering systems, namely application of the fault tree analysis technique and the method of digraphs. Both use a comparative approach to consider differences between actual system behaviour and that expected. The procedural guidelines are discussed for each method, with an experimental aircraft fuel system used to test and demonstrate the features of the techniques. The effectiveness of the approaches are compared and their future potential highlighted

    Few-Shot Learning Approaches for Fault Diagnosis Using Vibration Data: A Comprehensive Review

    Get PDF
    Fault detection and diagnosis play a crucial role in ensuring the reliability and safety of modern industrial systems. For safety and cost considerations, critical equipment and systems in industrial operations are typically not allowed to operate in severe fault states. Moreover, obtaining labeled samples for fault diagnosis often requires significant human effort. This results in limited labeled data for many application scenarios. Thus, the focus of attention has shifted towards learning from a small amount of data. Few-shot learning has emerged as a solution to this challenge, aiming to develop models that can effectively solve problems with only a few samples. This approach has gained significant traction in various fields, such as computer vision, natural language processing, audio and speech, reinforcement learning, robotics, and data analysis. Surprisingly, despite its wide applicability, there have been limited investigations or reviews on applying few-shot learning to the field of mechanical fault diagnosis. In this paper, we provide a comprehensive review of the relevant work on few-shot learning in mechanical fault diagnosis from 2018 to September 2023. By examining the existing research, we aimed to shed light on the potential of few-shot learning in this domain and offer valuable insights for future research directions

    Review of recent research towards power cable life cycle management

    Get PDF
    Power cables are integral to modern urban power transmission and distribution systems. For power cable asset managers worldwide, a major challenge is how to manage effectively the expensive and vast network of cables, many of which are approaching, or have past, their design life. This study provides an in-depth review of recent research and development in cable failure analysis, condition monitoring and diagnosis, life assessment methods, fault location, and optimisation of maintenance and replacement strategies. These topics are essential to cable life cycle management (LCM), which aims to maximise the operational value of cable assets and is now being implemented in many power utility companies. The review expands on material presented at the 2015 JiCable conference and incorporates other recent publications. The review concludes that the full potential of cable condition monitoring, condition and life assessment has not fully realised. It is proposed that a combination of physics-based life modelling and statistical approaches, giving consideration to practical condition monitoring results and insulation response to in-service stress factors and short term stresses, such as water ingress, mechanical damage and imperfections left from manufacturing and installation processes, will be key to success in improved LCM of the vast amount of cable assets around the world

    A self-validating control system based approach to plant fault detection and diagnosis

    Get PDF
    An approach is proposed in which fault detection and diagnosis (FDD) tasks are distributed to separate FDD modules associated with each control system located throughout a plant. Intended specifically for those control systems that inherently eliminate steady state error, it is modular, steady state based, requires very little process specific information and therefore should be attractive to control systems implementers who seek economies of scale. The approach is applicable to virtually all types of process plant, whether they are open loop stable or not, have a type or class number of zero or not and so on. Based on qualitative reasoning, the approach is founded on the application of control systems theory to single and cascade control systems with integral action. This results in the derivation of cause-effect knowledge and fault isolation procedures that take into account factors like interactions between control systems, and the availability of non-control-loop-based sensors
    • …
    corecore