843 research outputs found

    A two-level structure for advanced space power system automation

    Get PDF
    The tasks to be carried out during the three-year project period are: (1) performing extensive simulation using existing mathematical models to build a specific knowledge base of the operating characteristics of space power systems; (2) carrying out the necessary basic research on hierarchical control structures, real-time quantitative algorithms, and decision-theoretic procedures; (3) developing a two-level automation scheme for fault detection and diagnosis, maintenance and restoration scheduling, and load management; and (4) testing and demonstration. The outlines of the proposed system structure that served as a master plan for this project, work accomplished, concluding remarks, and ideas for future work are also addressed

    Establishment of a novel predictive reliability assessment strategy for ship machinery

    Get PDF
    There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme.There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme

    Engine Condition Monitoring and Diagnostics

    Get PDF

    Condition monitoring for a neutral beam heating system

    Get PDF
    This thesis presents the design of a condition monitoring scheme for the neutral beam cryogenic pumping system deployed in the Joint European Torus. The performance of the scheme is demonstrated by analysing its response to a range of fault scenarios. Condition monitoring has been successfully used in a diverse range of industries, from rail transport, to commercial power generation, to semiconductor manufacturing, among others. The application of model based condition monitoring to fusion applications has, however, been very limited. Given the importance of improving the availability of fusion devices, it was hypothesised that model based condition monitoring techniques could be used to good effect for this application. This provided the motivation for this research, which had the ultimate objective of demonstrating the usefulness of model based condition monitoring for fusion devices. The cryogenic pumping system used in the neutral beam heating devices operated by the project sponsor, the Culham Centre for Fusion Energy, was selected as the target for a demonstration condition monitoring scheme. This choice of target system was made and justified by the author through an analysis of its role in the neutral beam devices. The relative merits of several model based approaches were investigated. An observer based residual generation scheme, utilising a Kalman filter bank and residual thresholding arrangement was determined to be most suitable. A novel, accurate non-linear simulation model of the cryogenic pumping system was developed to act as a surrogate plant during the research, to facilitate the design and test procedure. This model was validated using historical process data. Two system identification techniques were used to obtain a set of linear models of the system for use in the Kalman filter bank. The scheme was tested by using the non-linear model to simulate ten different faults, all with unique failure modes. Two residual thresholding arrangements were tested and their performance was analysed to find the arrangement with the best performance. It was found that both variations of the scheme could detect all ten faults. The scheme using dual thresholds to check both the direction and magnitude of the residual signals was, however, better at isolating specific faults. The non-linear simulation model developed during the research was proven to be a genuine representation of the plant, by validating its response using historical process data. As such, it could be used in the future as the basis for a model based control system design procedure. The effectiveness of the scheme at detecting a range of faults which can arise in neutral beam heating systems supports the case for the future use of model based condition monitoring in nuclear fusion research

    Failure Prognosis of Wind Turbine Components

    Get PDF
    Wind energy is playing an increasingly significant role in the World\u27s energy supply mix. In North America, many utility-scale wind turbines are approaching, or are beyond the half-way point of their originally anticipated lifespan. Accurate estimation of the times to failure of major turbine components can provide wind farm owners insight into how to optimize the life and value of their farm assets. This dissertation deals with fault detection and failure prognosis of critical wind turbine sub-assemblies, including generators, blades, and bearings based on data-driven approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the Remaining Useful Life (RUL) of faulty components accurately and efficiently. The main contributions of this dissertation are in the application of ALTA lifetime analysis to help illustrate a possible relationship between varying loads and generators reliability, a wavelet-based Probability Density Function (PDF) to effectively detecting incipient wind turbine blade failure, an adaptive Bayesian algorithm for modeling the uncertainty inherent in the bearings RUL prediction horizon, and a Hidden Markov Model (HMM) for characterizing the bearing damage progression based on varying operating states to mimic a real condition in which wind turbines operate and to recognize that the damage progression is a function of the stress applied to each component using data from historical failures across three different Canadian wind farms

    Papers presented at the IEEE 15th Symposium on Fusion Engineering by the Alcator C-MOD Group, October 1993

    Get PDF

    Detection of Natural Crack in Wind Turbine Gearbox

    Get PDF
    This document is the Accepted Manuscript version of the following article: Suliman Shanbr, Faris Elasha, Mohamed Elforjani, and Joao Teixeira, ‘Detection of natural crack in wind turbine gearbox’, Renewable Energy, vol. 118: 172-179, October 2017. Under embargo. Embargo end date: 30 October 2018. The final, published version is available online at doi: https://doi.org/10.1016/j.renene.2017.10.104. © 2017 Elsevier Ltd. This manuscript version is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.One of the most challenging scenarios in bearing diagnosis is the extraction of fault signatures from within other strong components which mask the vibration signal. Usually, the bearing vibration signals are dominated by those of other components such as gears and shafts. A good example of this scenario is the wind turbine gearbox which presents one of the most difficult bearing detection tasks. The non-stationary signal analysis is considered one of the main topics in the field of machinery fault diagnosis. In this paper, a set of signal processing techniques has been studied to investigate their feasibility for bearing fault detection in wind turbine gearbox. These techniques include statistical condition indicators, spectral kurtosis, and envelope analysis. The results of vibration analysis showed the possibility of bearing fault detection in wind turbine high-speed shafts using multiple signal processing techniques. However, among these signal processing techniques, spectral kurtosis followed by envelope analysis provides early fault detection compared to the other techniques employed. In addition, outer race bearing fault indicator provides clear indication of the crack severity and progress.Peer reviewe

    Health management design considerations for an all electric aircraft

    Get PDF
    This paper explains the On-board IVHM system for a State-Of-the-Art “All electric aircraft” and explores implementing practices for analysis based design, illustrations and development of IVHM capabilities. On implementing the system as an on board system will carry out fault detection and isolation, recommend maintenance action, provides prognostic capabilities to highest possible problems before these became critical. The vehicle Condition Based Maintenance (CBM) and adaptive control algorithm development based on an open architecture system which allow “Plug in and Plug off” various systems in a more efficient and flexible way. The scope of the IVHM design included consideration of data collection and communication from the continuous monitoring of aircraft systems, observation of current system states, and processing of this data to support proper maintenance and repair actions. Legacy commercial platforms and HM applications for various subsystems of these aircraft were identified. The list of possible applications was down-selected to a reduced number that offer the highest value using a QFD matrix based on the cost benefit analysis. Requirements, designs and system architectures were developed for these applications. The application areas considered included engine, tires and brakes, pneumatics and air conditioning, generator, and structures. IVHM design program included identification of application sensors, functions and interfaces; IVHM system architecture, descriptions of certification requirements and approaches; the results of a cost/benefit analyses and recommended standards and technology gaps. The work concluded with observations on nature of HM, the technologies, and the approaches and challenges to its integration into the current avionics, support system and business infrastructure. The IVHM design for All Electric Hybrid Wing Body (HWB) Aircraft has a challenging task of addressing and resolving the shortfalls in the legacy IVHM framework. The challenges like sensor battery maintenance, handling big data from SHM, On-Ground Data transfer by light, Extraction of required features at sensor nodes/RDCUs, ECAM/EICAS Interfaces, issues of certification of wireless SHM network has been addressed in this paper. Automatic Deployable Flight Data recorders are used in the design of HWB aircraft in which critical flight parameters are recorded. The component selection of IVHM system including software and hardware have been based on the COTS technology. The design emphasis on high levels of reliability and maintainability. The above systems are employed using IMA and integrated on AFDX data bus. The design activities has to pass through design reviews on systematic basis and the overall approach has been to make system highly lighter, effective “All weather” compatible and modular. It is concluded from the study of advancement in IVHM capabilities and new service offerings that IVHM technology is emerging as well as challenging. With the inclusion of adaptive control, vehicle condition based maintenance and pilot fatigue monitoring, IVHM evolved as a more proactively involved on-board system
    • 

    corecore