412 research outputs found

    A distributed networked approach for fault detection of large-scale systems

    Get PDF
    Networked systems present some key new challenges in the development of fault diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multi-rate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based re-synchronization algorithm and a delay compensation strategy for distributed fault diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with timevarying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique

    A Distributed Networked Approach for Fault Detection of Large-scale Systems

    Get PDF
    Networked systems present some key new challenges in the development of fault diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multi-rate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based re-synchronization algorithm and a delay compensation strategy for distributed fault diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with timevarying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique

    Robust H

    Get PDF
    This paper investigates the problem of robust H∞ fault detection for networked Markov jump systems with random time-delay which is introduced by the network. The random time-delay is modeled as a Markov process, and the networked Markov jump systems are modeled as control systems containing two Markov chains. The delay-dependent fault detection filter is constructed. Furthermore, the sufficient and necessary conditions which make the closed-loop system stochastically stable and achieve prescribed H∞ performance are derived. The method of calculating controller, fault detection filter gain matrices, and the minimal H∞ attenuation level is also obtained. Finally, one numerical example is used to illustrate the effectiveness of the proposed method

    Observer-based fault detection of technical systems over networks

    Get PDF
    The introduction of networks into technical systems for facilitating remote data transmission, low complexity in wiring and easy diagnosis and maintenance, raises new challenges in fault detection (FD), such as how to handle network-induced time-varying transmission delays, packet dropouts, quantization errors and bit errors. These factors lead to increasing interest in developing new structures and design schemes for FD of technical systems over networks. In this thesis all network-induced effects are analyzed and modeled systematically at first. By observing the stochastic inheritance of networks, an FD framework of Markov jumping linear systems is presented as a basis for the later developments. Then two observer-based schemes for the purpose of FD over networks with guaranteed false alarm rate (FAR) are proposed: a remote FD system and an FD system of networked control systems (NCSs). The remote FD scheme is for detecting faults in technical systems at a remote site, where system measurements are transmitted via networks. In this scheme, the coding mechanism of communication channels is investigated from the view point of control engineering and new methods are developed for optimal residual generation and evaluation by considering network-induced data loss and corruption. A novel design scheme of FD system is also developed for NCSs, where the technical system is networked, i.e. controllers, actuators and sensors are connected with communication channels. In this scheme, network-induced transmission delays, packet dropouts, quantization errors are taken into account for the design of the optimal FD system. The linear matrix inequalities (LMIs) and convex optimization techniques are applied for assisting the design procedures. The developed schemes are tested with numerical examples and implemented in a three-tank system benchmark, and their superiority to existing solutions is demonstrated. Existing restrictions are overcome and new observer-based FD schemes over networks are introduced having the following characteristics: (1) the residual generators in both schemes are optimal in the sense of achieving the best trade-off between sensitivity to system faults and robustness against system disturbances and network-induced effects; (2) the proposed schemes can provide reliability information of rising fault alarms by analyzing the mean and variance of residual signals. Such information is very useful for practical applications in industries; (3) the design of residual generators and computation of thresholds can be efficiently solved by means of existing LMI-solvers

    A control theoretic approach for security of cyber-physical systems

    Get PDF
    In this dissertation, several novel defense methodologies for cyber-physical systems have been proposed. First, a special type of cyber-physical system, the RFID system, is considered for which a lightweight mutual authentication and ownership management protocol is proposed in order to protect the data confidentiality and integrity. Then considering the fact that the protection of the data confidentiality and integrity is insufficient to guarantee the security in cyber-physical systems, we turn to the development of a general framework for developing security schemes for cyber-physical systems wherein the cyber system states affect the physical system and vice versa. After that, we apply this general framework by selecting the traffic flow as the cyber system state and a novel attack detection scheme that is capable of capturing the abnormality in the traffic flow in those communication links due to a class of attacks has been proposed. On the other hand, an attack detection scheme that is capable of detecting both sensor and actuator attacks is proposed for the physical system in the presence of network induced delays and packet losses. Next, an attack detection scheme is proposed when the network parameters are unknown by using an optimal Q-learning approach. Finally, this attack detection and accommodation scheme has been further extended to the case where the network is modeled as a nonlinear system with unknown system dynamics --Abstract, page iv

    Optimal Sequence-Based Control of Networked Linear Systems

    Get PDF
    In Networked Control Systems (NCS), components of a control loop are connected by data networks that may introduce time-varying delays and packet losses into the system, which can severly degrade control performance. Hence, this book presents the newly developed S-LQG (Sequence-Based Linear Quadratic Gaussian) controller that combines the sequence-based control method with the well-known LQG approach to stochastic optimal control in order to compensate for the network-induced effects

    Optimal Sequence-Based Control of Networked Linear Systems

    Get PDF
    In Networked Control Systems (NCS), components of a control loop are connected by data networks that may introduce time-varying delays and packet losses into the system, which can severly degrade control performance. Hence, this book presents the newly developed S-LQG (Sequence-Based Linear Quadratic Gaussian) controller that combines the sequence-based control method with the well-known LQG approach to stochastic optimal control in order to compensate for the network-induced effects

    Neural Networks: Training and Application to Nonlinear System Identification and Control

    Get PDF
    This dissertation investigates training neural networks for system identification and classification. The research contains two main contributions as follow:1. Reducing number of hidden layer nodes using a feedforward componentThis research reduces the number of hidden layer nodes and training time of neural networks to make them more suited to online identification and control applications by adding a parallel feedforward component. Implementing the feedforward component with a wavelet neural network and an echo state network provides good models for nonlinear systems.The wavelet neural network with feedforward component along with model predictive controller can reliably identify and control a seismically isolated structure during earthquake. The network model provides the predictions for model predictive control. Simulations of a 5-story seismically isolated structure with conventional lead-rubber bearings showed significant reductions of all response amplitudes for both near-field (pulse) and far-field ground motions, including reduced deformations along with corresponding reduction in acceleration response. The controller effectively regulated the apparent stiffness at the isolation level. The approach is also applied to the online identification and control of an unmanned vehicle. Lyapunov theory is used to prove the stability of the wavelet neural network and the model predictive controller. 2. Training neural networks using trajectory based optimization approachesTraining neural networks is a nonlinear non-convex optimization problem to determine the weights of the neural network. Traditional training algorithms can be inefficient and can get trapped in local minima. Two global optimization approaches are adapted to train neural networks and avoid the local minima problem. Lyapunov theory is used to prove the stability of the proposed methodology and its convergence in the presence of measurement errors. The first approach transforms the constraint satisfaction problem into unconstrained optimization. The constraints define a quotient gradient system (QGS) whose stable equilibrium points are local minima of the unconstrained optimization. The QGS is integrated to determine local minima and the local minimum with the best generalization performance is chosen as the optimal solution. The second approach uses the QGS together with a projected gradient system (PGS). The PGS is a nonlinear dynamical system, defined based on the optimization problem that searches the components of the feasible region for solutions. Lyapunov theory is used to prove the stability of PGS and QGS and their stability under presence of measurement noise
    corecore