2,983 research outputs found

    Cooperative Virtual Sensor for Fault Detection and Identification in Multi-UAV Applications

    Get PDF
    This paper considers the problem of fault detection and identification (FDI) in applications carried out by a group of unmanned aerial vehicles (UAVs) with visual cameras. In many cases, the UAVs have cameras mounted onboard for other applications, and these cameras can be used as bearing-only sensors to estimate the relative orientation of another UAV. The idea is to exploit the redundant information provided by these sensors onboard each of the UAVs to increase safety and reliability, detecting faults on UAV internal sensors that cannot be detected by the UAVs themselves. Fault detection is based on the generation of residuals which compare the expected position of a UAV, considered as target, with the measurements taken by one or more UAVs acting as observers that are tracking the target UAV with their cameras. Depending on the available number of observers and the way they are used, a set of strategies and policies for fault detection are defined. When the target UAV is being visually tracked by two or more observers, it is possible to obtain an estimation of its 3D position that could replace damaged sensors. Accuracy and reliability of this vision-based cooperative virtual sensor (CVS) have been evaluated experimentally in a multivehicle indoor testbed with quadrotors, injecting faults on data to validate the proposed fault detection methods.Comisión Europea H2020 644271Comisión Europea FP7 288082Ministerio de Economia, Industria y Competitividad DPI2015-71524-RMinisterio de Economia, Industria y Competitividad DPI2014-5983-C2-1-RMinisterio de Educación, Cultura y Deporte FP

    Integration of fault tolerance and hardware redundancy techniques into the design of mobile platforms

    Get PDF
    This work addresses the development of a fault-tolerant mobile platform. Fault-tolerant mechanical system design is an emerging technology that attempts to build highly reliable systems by incorporating hardware and software architectures. For this purpose, previous work in fault-tolerant were reviewed. Alternate architectures were evaluated to maximize the fault tolerance capabilities of the driving and steering systems of a mobile platform. The literature review showed that most of the research work on fault tolerance has been done in the area of kinematics and control systems of robotic arms. Therefore, hardware redundancy and fault tolerance in mobile robots is an area to be researched. The prototype constructed as part of this work demonstrated basic principles and uses of a fault-tolerant mechanism, and is believed to be the first such system in its class. It is recommended that different driving and steering architectures, and the fault-tolerant controllers\u27 performance be tested on this prototype

    Evaluating a Data Distribution Service System for Dynamic Manufacturing Environments: A Case Study

    Get PDF
    AbstractSmall and Medium sized Enterprises (SMEs) in Europe struggle to incorporate industrial robots in their production environments, while large enterprises use these robots for large batch production only. The paradigm shift from mass production to mass personalization decreases batch sizes and changes the approach to implementation of industrial robots in manufacturing environments. It also opens doors for SMEs to further incorporate robots in their production environments. The goal of this research is to evaluate the suitability of a data-centric, distributed, decentralized manufacturing system for cooperation between robots and humans. A case is presented featuring cooperation between robots and humans. A control system is proposed based on distributed intelligence and decentralized control, to handle the rapidly expanding complexity in dynamic manufacturing environments. The communication in such a distributed environment is provided by a Data Distribution Service system; an extendible, flexible approach to communication. Key issues that are encountered in implementing the cooperation into the current industrial environments are identified. The proposed control system is projected on the case and evaluated for application suitability and expected performance

    Kinematic design and motion planning of fault tolerant robots with locked joint failures

    Get PDF
    2019 Summer.Includes bibliographical references.The problem of kinematic design and motion planning of fault tolerant robots with locked joint failure is studied in this work. In kinematic design, the problem of designing optimally fault tolerant robots for equal joint failure probabilities is first explored. A measure of local fault tolerance for equal joint failure probabilities has previously been defined based on the properties of the singular values of the Jacobian matrix. Based on this measure, one can determine a Jacobian that is optimal. Because these measures are solely based on the singular values of the Jacobian, permutation of the columns does not affect the optimality. Therefore, when one generates a kinematic robot design from this optimal Jacobian, there will be 7! robot designs with the same locally optimal fault tolerant property. This work shows how to analyze and organize the kinematic structure of these 7! designs in terms of their Denavit and Hartenberg (DH) parameters. Furthermore, global fault tolerant measures are defined in order to evaluate the different designs. It is shown that robot designs that are very similar in terms of DH parameters, e.g., robots generated from Jacobians where the columns are in reverse order, can have very different global properties. Finally, a computationally efficient approach to calculate the global pre- and post-failure dexterity measures is presented and used to identify two Pareto optimal robot designs. The workspaces for these optimal designs are also shown. Then, the problem of designing optimally fault tolerant robots for different joint failure probabilities is considered. A measure of fault tolerance for different joint failure probabilities is defined based on the properties of the singular values of the Jacobian after failures. Using this measure, methods to design optimally fault tolerant robots for an arbitrary set of joint failure probabilities and multiple cases of joint failure probabilities are introduced separately. Given an arbitrary set of joint failure probabilities, the optimal null space that optimizes the fault tolerant measure is derived, and the associated isotropic Jacobians are constructed. The kinematic parameters of the optimally fault tolerant robots are then generated from these Jacobians. One special case, i.e., how to construct the optimal Jacobian of spatial 7R robots for both positioning and orienting is further discussed. For multiple cases of joint failure probabilities, the optimal robot is designed through optimizing the sum of the fault tolerant measures for all the possible joint failure probabilities. This technique is illustrated on planar 3R robots, and it is shown that there exists a family of optimal robots. After the optimally fault tolerant robots are designed, the problem of planning the optimal trajectory with minimum probability of task failure for a set of point-to-point tasks, after experiencing locked joint failures, is studied. The proposed approach first develops a method to calculate the probability of task failure for an arbitrary trajectory, where the trajectory is divided into small segments, and the probability of task failure of each segment is calculated based on its failure scenarios. Then, a motion planning algorithm is proposed to find the optimal trajectory with minimum probability of task failure. There are two cases. The trajectory in the first case is the optimal trajectory from the start configuration to the intersection of the bounding boxes of all the task points. In the other case, all the configurations along the self-motion manifold of task point 1 need to be checked, and the optimal trajectory is the trajectory with minimum probability of task failure among them. The proposed approach is demonstrated on planar 2R redundant robots, illustrating the effectiveness of the algorithm

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future
    corecore