7,027 research outputs found

    Reliable scientific service compositions

    Get PDF
    Abstract. Distributed service oriented architectures (SOAs) are increas-ingly used by users, who are insufficiently skilled in the art of distributed system programming. A good example are computational scientists who build large-scale distributed systems using service-oriented Grid comput-ing infrastructures. Computational scientists use these infrastructure to build scientific applications, which are composed from basic Web ser-vices into larger orchestrations using workflow languages, such as the Business Process Execution Language. For these users reliability of the infrastructure is of significant importance and that has to be provided in the presence of hardware or operational failures. The primitives avail-able to achieve such reliability currently leave much to be desired by users who do not necessarily have a strong education in distributed sys-tem construction. We characterise scientific service compositions and the environment they operate in by introducing the notion of global scien-tific BPEL workflows. We outline the threats to the reliability of such workflows and discuss the limited support that available specifications and mechanisms provide to achieve reliability. Furthermore, we propose a line of research to address the identified issues by investigating auto-nomic mechanisms that assist computational scientists in building, exe-cuting and maintaining reliable workflows.

    Using real options to select stable Middleware-induced software architectures

    Get PDF
    The requirements that force decisions towards building distributed system architectures are usually of a non-functional nature. Scalability, openness, heterogeneity, and fault-tolerance are examples of such non-functional requirements. The current trend is to build distributed systems with middleware, which provide the application developer with primitives for managing the complexity of distribution, system resources, and for realising many of the non-functional requirements. As non-functional requirements evolve, the `coupling' between the middleware and architecture becomes the focal point for understanding the stability of the distributed software system architecture in the face of change. It is hypothesised that the choice of a stable distributed software architecture depends on the choice of the underlying middleware and its flexibility in responding to future changes in non-functional requirements. Drawing on a case study that adequately represents a medium-size component-based distributed architecture, it is reported how a likely future change in scalability could impact the architectural structure of two versions, each induced with a distinct middleware: one with CORBA and the other with J2EE. An option-based model is derived to value the flexibility of the induced-architectures and to guide the selection. The hypothesis is verified to be true for the given change. The paper concludes with some observations that could stimulate future research in the area of relating requirements to software architectures

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    A Peer-to-Peer Middleware Framework for Resilient Persistent Programming

    Get PDF
    The persistent programming systems of the 1980s offered a programming model that integrated computation and long-term storage. In these systems, reliable applications could be engineered without requiring the programmer to write translation code to manage the transfer of data to and from non-volatile storage. More importantly, it simplified the programmer's conceptual model of an application, and avoided the many coherency problems that result from multiple cached copies of the same information. Although technically innovative, persistent languages were not widely adopted, perhaps due in part to their closed-world model. Each persistent store was located on a single host, and there were no flexible mechanisms for communication or transfer of data between separate stores. Here we re-open the work on persistence and combine it with modern peer-to-peer techniques in order to provide support for orthogonal persistence in resilient and potentially long-running distributed applications. Our vision is of an infrastructure within which an application can be developed and distributed with minimal modification, whereupon the application becomes resilient to certain failure modes. If a node, or the connection to it, fails during execution of the application, the objects are re-instantiated from distributed replicas, without their reference holders being aware of the failure. Furthermore, we believe that this can be achieved within a spectrum of application programmer intervention, ranging from minimal to totally prescriptive, as desired. The same mechanisms encompass an orthogonally persistent programming model. We outline our approach to implementing this vision, and describe current progress.Comment: Submitted to EuroSys 200
    corecore