477 research outputs found

    Algorithmes et architectures pour la commande et le diagnostic de systĂšmes critiques de vol

    Get PDF
    Flight-Critical Systems such as Electromechanical Actuators driven by Engine Control Units (ECU) or Flight Control Units (FCU) are designed and developed regarding drastic safety requirements. In this study, an actuator control and monitoring ECU architecture based on analytic redundancy is proposed. In case of fault occurrences, material redundancies in avionic equipment allow certaincritical systems to reconfigure or to switch into a safe mode. However, material redundancies increase aircraft equipment size, weight and power (SWaP). Monitoring based on dynamical models is an interesting way to further enhance safetyand availability without increasing the number of redundant items. Model-base dfault detection and isolation (FDI) methods [58, 26, 47] such as observers and parity space are recalled in this study. The properties of differential flatness for nonlinear systems [80, 41, 73] and endogenous feedback linearisation are used with nonlinear diagnosis models. Linear and nonlinear observers are then compared with an application on hybrid stepper motor (HSM). A testing bench was specially designed to observe in real-time the behaviour of the diagnosis models when faults occur on the stator windings of a HSM.Les systĂšmes critiques de vol tels que les actionneurs Ă©lectromĂ©caniques ainsi que les calculateurs de commande moteur (ECU) et de vol (FCU),sont conçus en tenant compte des contraintes aĂ©ronautiques sĂ©vĂšres de suretĂ© defonctionnement. Dans le cadre de cette Ă©tude, une architecture calculateur pourla commande et la surveillance d’actionneurs moteur et de surfaces de vol est proposĂ©e et Ă  fait l’objet d’un brevet [13]. Pour garantir ces mesure de suretĂ©, les ECU et FCU prĂ©sentent des redondances matĂ©rielles multiples, mais engendrent une augmentation de l’encombrement, du poids et de l’énergie consommĂ©e. Pour ces raisons, les redondances Ă  base de modĂšles dynamiques, prĂ©sentent un atout majeur pour les calculateurs car elles permettent dans certains cas de maintenir les exigences d’intĂ©gritĂ© et de disponibilitĂ© tout en rĂ©duisant le nombre de capteurs ou d’actionneurs. Un rappel sur les mĂ©thodes de diagnostic par gĂ©nĂ©rateurs de rĂ©sidus et estimateurs d’états [58, 26, 47] est effectuĂ© dans cette Ă©tude. Les propriĂ©tĂ©s de platitude diffĂ©rentielle et la linĂ©arisation par diffĂ©omorphisme et bouclage endogĂšne [80, 41, 73] permettent d’utiliser des modĂšles linĂ©aires Ă©quivalents avec les gĂ©nĂ©rateurs de rĂ©sidus. Un banc d’essai a Ă©tĂ© conçu afin de valider les performances des algorithmes de diagnostic

    Contribution au diagnostic de pannes pour\ud les systÚmes différentiellement plats

    Get PDF
    Cette thĂšse s’intĂ©resse au diagnostic de pannes dans les systĂšmes diffĂ©rentiellement plats, ceci constituant une large classe de systĂšmes non linĂ©aires. La propriĂ©tĂ© de platitude diffĂ©rentielle est caractĂ©risĂ©e par des relations qui permettent d’exprimer les Ă©tats d’un systĂšme et ses entrĂ©es en fonction de ses sorties plates et de leurs dĂ©rivĂ©es. Ces relations qui sont Ă  la base de la commande plate sont aussi utiles pour la rĂ©alisation du diagnostic de pannes. Ainsi sont introduites les notions de minimalitĂ© pour les sorties plates, de platitude stricte et de degrĂ© additionnel de redondance. Ceci conduit Ă  la proposition d’une mĂ©thode globale de dĂ©tection de pannes basĂ©e sur la platitude. Partant alors de la constatation que les systĂšmes diffĂ©rentiellement plats de complexitĂ© Ă©levĂ©e sont souvent constituer de sous systĂšmes eux mĂȘmes diffĂ©rentiellement plats, l’approche de dĂ©tection de pannes prĂ©cĂ©dente peut ĂȘtre dĂ©multipliĂ©e au sein de cette structure de façon Ă  en identifier les sous systĂšmes dĂ©faillants. On s’intĂ©resse alors au cas courant de la platitude diffĂ©rentielle implicite et on montre dans le cadre d’une application aĂ©ronautique comment les rĂ©seaux de neurones permettent de constituer une solution numĂ©rique au problĂšme de dĂ©tection de pannes. La disponibilitĂ© en temps rĂ©el de dĂ©rivĂ©es successives des sorties Ă©tant essentielle pour la mise en oeuvre de ces mĂ©thodes, on Ă©tudie alors les performances d’un filtre dĂ©rivateur alors que le systĂšme est lui-mĂȘme soumis Ă  une commande plate, ceci conduira a modifiĂ© lĂ©gĂšrement une telle loi de commande afin d’effectuer l’effet des erreurs d’estimation. On s’intĂ©resse finalement Ă  la dĂ©tection des pannes dans les systĂšmes chaotiques diffĂ©rentiellement plats. On montre sur plusieurs exemples comment la propriĂ©tĂ© de platitude peut ĂȘtre mise Ă  profit pour dĂ©tecter et identifier des variations paramĂ©triques au sein d’un tel type de systĂšme chaotique. Des rĂ©sultats de simulation sont prĂ©sentĂ©s. Finalement des thĂšmes de recherche complĂ©mentaires Ă  cette approche sont relevĂ©s. --------------------------------------------------------------------- This thesis is devoted to the diagnostic of faults in differentially flat systems, where\ud differentially flat systems constitute a rather large class of non linear systems. The flatness\ud property is characterized by relations allowing to express states and input as functions of the\ud outputs and their derivatives up to a finite order. These relations are the basis for the synthesis\ud of flat control laws and are, is it displayed here, useful to perform an efficient diagnostic of\ud additional redundancy degree. Then a global fault detection method based on the flatness\ud property is proposed. It is shown that many differentially flat subsystems so that the proposed\ud fault detection method can be applied within the corresponding structure allowing then the\ud identification of faulty subsystems. Then the frequent case of implicitly differentially flat\ud systems is considered and it is shown through an aeronautical application that neural networks\ud can provide a numerical solution approach to this fault detection problem. Since with this\ud approach the one line availability of successive derivatives of the outputs is imperative, the\ud performance of a derivative filter is studied. To eliminate the effect of the resulting estimation\ud errors, some improvements are introduced to the current flat control law. In the last section of\ud the report the diagnostic of differentially flat chaotic systems is considered. In different cases it is shown how the differential flatness property can be used to detect and identify variations of the parameters of the chaotic system. Simulation results are displayed. Finally some complementary fields of research are pointed out\u

    SIRU development. Volume 1: System development

    Get PDF
    A complete description of the development and initial evaluation of the Strapdown Inertial Reference Unit (SIRU) system is reported. System development documents the system mechanization with the analytic formulation for fault detection and isolation processing structure; the hardware redundancy design and the individual modularity features; the computational structure and facilities; and the initial subsystem evaluation results

    A Novel Collision Avoidance Logic for Unmanned Aerial Vehicles Using Real-Time Trajectory Planning

    Get PDF
    An effective collision avoidance logic should prevent collision without excessive alerting. This requirement would be even more stringent for an automatic collision avoidance logic, which is probably required by Unmanned Aerial Vehicles to mitigate the impact of delayed or lost link issues. In order to improve the safety performance and reduce the frequency of false alarms, this thesis proposes a novel collision avoidance logic based on the three-layer architecture and a real-time trajectory planning method. The aim of this thesis is to develop a real-time trajectory planning algorithm for the proposed collision avoidance logic and to determine the integrated logic’s feasibility, merits and limitations for practical applications. To develop the trajectory planning algorithm, an optimal control problem is formulated and an inverse-dynamic direct method along with a two stage, derivative-free pattern search method is used as the solution approach. The developed algorithm is able to take into account the flyability of three dimensional manoeuvres, the robustness to the intruder state uncertainty and the field-of-regard restriction of surveillance sensors. The testing results show that the standalone executable of the algorithm is able to provide a flyable avoidance trajectory with a maximum computation time less than 0.5 seconds. To evaluate the performance of the proposed logic, an evaluation framework for Monte Carlo simulations and a baseline approach for comparison are constructed. Based on five Monte Carlo simulation experiments, it is found that the proposed logic should be feasible as 1) it is able to achieve an update rate of 2Hz, 2) its safety performance is comparable with a reference requirement from another initial feasibility study, and 3) despite a 0.5 seconds computation latency, it outperforms the baseline approach in terms of safety performance and robustness to sensor and feedback error
    • 

    corecore