488 research outputs found

    Fault diagnosis-based SDG transfer for zero-sample fault symptom

    Get PDF
    The traditional fault diagnosis models cannot achieve good fault diagnosis accuracy when a new unseen fault class appears in the test set, but there is no training sample of this fault in the training set. Therefore, studying the unseen cause-effect problem of fault symptoms is extremely challenging. As various faults often occur in a chemical plant, it is necessary to perform fault causal-effect diagnosis to find the root cause of the fault. However, only some fault causal-effect data are always available to construct a reliable causal-effect diagnosis model. Another worst thing is that measurement noise often contaminates the collected data. The above problems are very common in industrial operations. However, past-developed data-driven approaches rarely include causal-effect relationships between variables, particularly in the zero-shot of causal-effect relationships. This would cause incorrect inference of seen faults and make it impossible to predict unseen faults. This study effectively combines zero-shot learning, conditional variational autoencoders (CVAE), and the signed directed graph (SDG) to solve the above problems. Specifically, the learning approach that determines the cause-effect of all the faults using SDG with physics knowledge to obtain the fault description. SDG is used to determine the attributes of the seen and unseen faults. Instead of the seen fault label space, attributes can easily create an unseen fault space from a seen fault space. After having the corresponding attribute spaces of the failure cause, some failure causes are learned in advance by a CVAE model from the available fault data. The advantage of the CVAE is that process variables are mapped into the latent space for dimension reduction and measurement noise deduction; the latent data can more accurately represent the actual behavior of the process. Then, with the extended space spanned by unseen attributes, the migration capabilities can predict the unseen causes of failure and infer the causes of the unseen failures. Finally, the feasibility of the proposed method is verified by the data collected from chemical reaction processes

    ๋จธ์‹  ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•๊ณผ ์ •๋ณด ์ด๋ก ์„ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2021.8. ๋ฌธ๊ฒฝ๋นˆ.๊ณต์ • ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์€ ํšจ๊ณผ์ ์ด๊ณ  ์•ˆ์ „ํ•œ ๊ณต์ • ์šด์ „์„ ์œ„ํ•œ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ๊ณต์ • ์ด์ƒ์€ ๋ชฉํ‘œ ์ƒ์„ฑ๋ฌผ์˜ ํ’ˆ์งˆ์— ์˜ํ–ฅ์„ ์ฃผ๊ฑฐ๋‚˜ ๊ณต์ •์˜ ์ •์ƒ ๊ฐ€๋™์„ ๋ฐฉํ•ดํ•˜์—ฌ ์ƒ์‚ฐ์„ฑ์„ ์ €ํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค. ํญ๋ฐœ์„ฑ ๋ฐ ์ธํ™”์„ฑ ๋ฌผ์งˆ์„ ์ฃผ๋กœ ๋‹ค๋ฃจ๋Š” ํ™”ํ•™๊ณต์ •์˜ ๊ฒฝ์šฐ ๊ณต์ • ์ด์ƒ์€ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์š”์†Œ์ธ ๊ณต์ •์˜ ์•ˆ์ „์„ ์œ„ํ˜‘ํ•˜๋Š” ์š”์†Œ๋กœ ์ž‘์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•œํŽธ, ํ˜„๋Œ€์˜ ๊ณต์ •์˜ ๋ฒ”์œ„๊ฐ€ ํ™•์žฅ๋˜๊ณ  ์ž๋™ํ™”์™€ ๊ณ ๋„ํ™”๊ฐ€ ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ ์ ์  ๋” ์‹ ๋ขฐ๋„ ๋†’์€ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์ด ์š”๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ณต์ • ๋ชจ๋‹ˆํ„ฐ๋ง์€ ํฌ๊ฒŒ ์„ธ ๋‹จ๊ณ„๋กœ ๊ตฌ๋ถ„๋  ์ˆ˜ ์žˆ๋‹ค. ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ณต์ •์˜ ์ด์ƒ ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•˜๋Š” ๊ณต์ • ์ด์ƒ ๊ฐ์ง€, ๋‹ค์Œ์œผ๋กœ ๊ฐ์ง€๋œ ์ด์ƒ์˜ ์›์ธ์„ ํŒŒ์•…ํ•˜๋Š” ์ด์ƒ ์ง„๋‹จ, ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ณต์ • ์ด์ƒ์˜ ์›์ธ์„ ์ œ๊ฑฐํ•˜๊ณ  ์ •์ƒ ์ƒํƒœ๋กœ ํšŒ๋ณต์‹œํ‚ค๋Š” ๋ณต์›์œผ๋กœ ๋‚˜๋‰˜์–ด์ง„๋‹ค. ํŠนํžˆ ๊ณต์ • ์ด์ƒ ๊ฐ์ง€์™€ ์ง„๋‹จ ์‹œ์Šคํ…œ์„ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ๋“ค์ด ์ œ์•ˆ๋˜์–ด์™”์œผ๋ฉฐ, ๊ทธ ๋ฐฉ๋ฒ•๋ก ๋“ค์€ ํฌ๊ฒŒ ์„ธ ๊ฐ€์ง€๋กœ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฌผ๋ฆฌ ์ด๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ชจ๋ธ ๋ถ„์„ ๋ฐฉ๋ฒ•๊ณผ ํŠน์ • ๋ถ„์•ผ์˜ ๊ฒฝํ—˜ ์ง€์‹์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ์ง€์‹ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์— ๋น„ํ•ด ๋ฒ”์šฉ์ ์ธ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ๊ณผ ํ˜„๋Œ€ ๊ณต์ •์˜ ํ’๋ถ€ํ•œ ๊ณต์ • ๋ฐ์ดํ„ฐ๊ฐ€ ์ œ๊ณต๋˜๋Š” ์กฐ๊ฑด์˜ ์ถฉ์กฑ์œผ๋กœ ์ธํ•ด ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์ด ๋„๋ฆฌ ํ™œ์šฉ๋˜์–ด์ง€๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๊ณต์ • ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐฉ๋ฒ•๋ก ๋“ค์€ ๊ณต์ •์˜ ๊ทœ๋ชจ์™€ ๋ณต์žก๋„๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๊ทธ ์žฅ์ ์ด ๋”์šฑ ๊ทน๋Œ€ํ™”๋˜๋Š” ํŠน์ง•์„ ๊ฐ–๋Š”๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์กด์˜ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๊ณต์ • ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐฉ๋ฒ•๋ก ๋“ค์˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ๊ณต์ • ์ด์ƒ ๊ฐ์ง€ ๋ฐฉ๋ฒ•๋ก ๊ณผ ์ด์ƒ ์ง„๋‹จ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ๊ณต์ • ์ด์ƒ ๊ฐ์ง€ ์‹œ์Šคํ…œ์€ ์ฐจ์› ์ถ•์†Œ๋ฐฉ๋ฒ•๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์ฐจ์› ์ถ•์†Œ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ณต์ • ์ด์ƒ ๊ฐ์ง€ ๋ชจ๋ธ์€ ๊ณต์ • ๋ฐ์ดํ„ฐ์— ๋‚ด์žฌ๋˜์–ด ์žˆ๋Š” ํŠน์ง•์œผ๋กœ ์ •์˜๋˜๋Š” ์ €์ฐจ์›์˜ ์ž ์žฌ ๊ณต๊ฐ„์„ ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ์ „ํ†ต์ ์ธ ๋‹ค๋ณ€๋Ÿ‰ ๊ณต์ • ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐฉ๋ฒ•์ธ ์ฃผ ์„ฑ๋ถ„ ๋ถ„์„๊ณผ ๋จธ์‹  ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์ธ ์˜คํ† ์ธ์ฝ”๋”๊ฐ€ ์žˆ๋‹ค. ์ตœ๊ทผ ํ’๋ถ€ํ•œ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ ๋•๋ถ„์— ๋‹ค์–‘ํ•œ ๋จธ์‹  ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•œ ์ด์ƒ ๊ฐ์ง€ ์‹œ์Šคํ…œ์ด ๋„๋ฆฌ ํ™œ์šฉ๋˜๊ณ  ์žˆ์ง€๋งŒ, ์•ž์„œ ์†Œ๊ฐœํ•œ ํ˜„๋Œ€ ๊ณต์ •์˜ ๋‹ค์–‘ํ•œ ํŠน์ง•์œผ๋กœ ์ธํ•ด ๋”์šฑ ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์˜ ๋ชจ๋‹ˆํ„ฐ๋ง ๊ธฐ๋ฒ•์˜ ๊ฐœ๋ฐœ์ด ์š”๊ตฌ๋˜์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด์„œ ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋ฅผ ๋ณ€๊ฒฝํ•˜๊ฑฐ๋‚˜ ๋ชจ๋ธ์˜ ํ•™์Šต ์ ˆ์ฐจ๋ฅผ ๋ณ€ํ˜•ํ•˜๋Š” ์ ‘๊ทผ๋ฒ•๋“ค์ด ์ฃผ๋กœ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ, ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ๋“ค์€ ๊ถ๊ทน์ ์œผ๋กœ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ํ’ˆ์งˆ์— ์˜์กด์ ์ด๋ผ๋Š” ํŠน์„ฑ์€ ์—ฌ์ „ํžˆ ๋‚จ์•„์žˆ๋‹ค. ์ฆ‰, ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ๋ถ€์กฑํ•œ ์ •๋ณด๋ฅผ ๋ณด์™„ํ•จ์œผ๋กœ์จ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์˜ ์™„์„ฑ๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์ด ์š”๊ตฌ๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ๋Š” ์ฒซ ๋ฒˆ์งธ ์ฃผ์ œ๋กœ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ๊ธฐ๋ฒ•์„ ๊ฒฐํ•ฉํ•œ ๊ณต์ • ์ด์ƒ ๊ฐ์ง€ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ๊ธฐ๋ฒ•์€ ์—ฌ๋Ÿฌ ์ง‘ํ•ฉ์„ ๊ตฌ๋ถ„ํ•˜๋Š” ๋ถ„๋ฅ˜๊ธฐ ๋ชจ๋ธ๋ง์‹œ์— ํŠน์ • ์ง‘ํ•ฉ์˜ ํ•™์Šต ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ์— ์ฃผ๋กœ ํ™œ์šฉ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฝ์šฐ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์„ ํ†ตํ•ด ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ๊ท ํ˜•์„ ๋งž์ถค์œผ๋กœ์จ ๋ชจ๋ธ์˜ ํ•™์Šต ํšจ์œจ์„ ์ฆ์ง„์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋ฉด์—, ๋ณธ ์—ฐ๊ตฌ์—์„œ์˜ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์€ ํ•œ ์ง‘ํ•ฉ ๋‚ด์—์„œ์˜ ๋ถˆ๊ท ํ˜•์„ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉ์ ์œผ๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์ •์ƒ ์กฐ๊ฑด์˜ ๊ณต์ • ๋ฐ์ดํ„ฐ๋Š” ์ •์ƒ๊ณผ ์ด์ƒ์˜ ๊ฒฝ๊ณ„์— ๋ถ„ํฌํ•˜๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ํฌ๋ฐ•ํ•˜๊ฒŒ ์กด์žฌํ•˜๋Š” ํŠน์ง•์„ ๊ฐ–๋Š”๋‹ค. ์ด์ƒ ๊ฐ์ง€ ์‹œ์Šคํ…œ์ด ์ •์ƒ ์ƒํƒœ์˜ ์ €์ฐจ์› ํŠน์ง• ๊ณต๊ฐ„์„ ํ•™์Šตํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ •์ƒ๊ณผ ์ด์ƒ์„ ๊ตฌ๋ถ„ํ•˜๋Š” ๋ชจ๋ธ์ด๋ผ๋Š” ์ ์„ ๊ณ ๋ คํ•˜๋ฉด ๊ฒฝ๊ณ„ ์˜์—ญ์˜ ๋ฐ์ดํ„ฐ์˜ ์ฆ๊ฐ•์ด ํŠน์ง• ๊ณต๊ฐ„ ํ•™์Šต์— ๊ธ์ •์ ์œผ๋กœ ์ž‘์šฉํ•  ๊ฒƒ์„ ๊ธฐ๋Œ€ํ•ด ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ๋งฅ๋ฝ์—์„œ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ๋จผ์ €, ๊ธฐ์กด์˜ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ธ๊ณต ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ์œ„ํ•œ ์ƒ์„ฑ๋ชจ๋ธ์ธ ๋ณ€๋ถ„ ์˜คํ† ์ธ์ฝ”๋”๋ฅผ ํ•™์Šตํ•œ๋‹ค. ์ƒ์„ฑ ๋ชจ๋ธ๋กœ ํ•™์Šตํ•œ ์ •์ƒ ์šด์ „ ๋ฐ์ดํ„ฐ์˜ ์ €์ฐจ์› ๋ถ„ํฌ์˜ ๊ฒฝ๊ณ„์˜์—ญ์— ํ•ด๋‹นํ•˜๋Š” ๋ฐ์ดํ„ฐ๋“ค์„ ์ธ๊ณต ๋ฐ์ดํ„ฐ๋กœ ์ƒ์„ฑํ•˜์—ฌ ํ•™์Šต๋ฐ์ดํ„ฐ์— ์ฆ๊ฐ•์‹œํ‚จ๋‹ค. ์ด๋ ‡๊ฒŒ ์ฆ๊ฐ•๋œ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ด์ƒ ๊ฐ์ง€ ๋ชจ๋ธ์„ ์œ„ํ•œ ๋จธ์‹  ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ฐจ์› ์ถ•์†Œ ๋ฐฉ๋ฒ•์ธ ์˜คํ† ์ธ์ฝ”๋”๋ฅผ ํ•™์Šตํ•˜์—ฌ ์ด์ƒ ๊ฐ์ง€ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•œ๋‹ค. ์ฆ๊ฐ•๋œ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์˜คํ† ์ธ์ฝ”๋”์˜ ์ž ์žฌ ๊ณต๊ฐ„ ํ•™์Šต์ด ๋” ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰๋  ์ˆ˜ ์žˆ๊ณ , ์ด๋Š” ๊ณง ์ •์ƒ๊ณผ ์ด์ƒ ์ƒํƒœ๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ์ด์ƒ ๊ฐ์ง€ ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ ๊ฐœ์„ ์œผ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค. ์ฐจ์› ์ถ•์†Œ ๊ธฐ๋ฒ•์€ ์ „ํ†ต์ ์ธ ์ด์ƒ ์ง„๋‹จ ๋ฐฉ๋ฒ•์œผ๋กœ๋„ ํ™œ์šฉ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋Š” ์ฐจ์› ์ถ•์†Œ์‹œ์˜ ์ •๋ณด์˜ ์†์‹ค๋กœ ์ธํ•ด ์ €์กฐํ•˜๊ณ  ์ผ๊ด€์„ฑ์ด ๋ถ€์กฑํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„์ ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด ๊ณต์ • ๋ณ€์ˆ˜ ๊ฐ„์˜ ์ธ๊ณผ ๊ด€๊ณ„๋ฅผ ์ง์ ‘์ ์œผ๋กœ ๋ถ„์„ํ•˜๋Š” ๊ธฐ๋ฒ•๋“ค์ด ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ๊ทธ ์ค‘ ํ•˜๋‚˜์ธ ์ •๋ณด ์ด๋ก  ๊ธฐ๋ฐ˜์˜ ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ๋Š” ํŠน์ • ๋ชจ๋ธ์ด๋‚˜ ์„ ํ˜• ๊ฐ€์ •์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๋น„์„ ํ˜• ๊ณต์ •์˜ ์ด์ƒ ์ง„๋‹จ์— ๋Œ€ํ•ด ์ผ๋ฐ˜์ ์œผ๋กœ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ๋ฅผ ์ด์šฉํ•œ ์ธ๊ณผ๊ด€๊ณ„ ๋ถ„์„ ๋ฐฉ๋ฒ•์€ ๊ณ ๋น„์šฉ์˜ ๋ฐ€๋„ ์ถ”์ •์„ ํ•„์š”๋กœ ํ•œ๋‹ค๋Š” ๋‹จ์ ์œผ๋กœ ์ธํ•ด ์†Œ๊ทœ๋ชจ ๊ณต์ •์— ๋Œ€ํ•ด์„œ๋งŒ ์ œํ•œ์ ์œผ๋กœ ์ ์šฉ๋˜์–ด ์™”๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„์ ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ์•ˆ์œผ๋กœ ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ผ๋Š” ์กฐ์ • ๋ฐฉ๋ฒ•์„ ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ์™€ ๊ฒฐํ•ฉํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋Š” ๋น„ ๋ฐฉํ–ฅ์„ฑ ๊ทธ๋ž˜ํ”„ ๋ชจ๋ธ์—์„œ ์„ฑ๊ธด ๊ตฌ์กฐ๋ฅผ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์œผ๋กœ ์ „์ฒด ๊ณต์ • ๊ทธ๋ž˜ํ”„๋กœ๋ถ€ํ„ฐ ์ƒ๊ด€ ๊ด€๊ณ„๊ฐ€ ๋†’์€ ๋ถ€๋ถ„ ๊ทธ๋ž˜ํ”„๋ฅผ ์ถ”์ถœํ•ด๋‚ผ ์ˆ˜ ์žˆ๋‹ค. ๊ฐ€์žฅ ๋†’์€ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๊ฐ–๋Š” ๋ถ€๋ถ„ ๊ทธ๋ž˜ํ”„์™€ ๋…๋ฆฝ๋œ ๋‚˜๋จธ์ง€ ๋ณ€์ˆ˜๋“ค์ด ๊ทธ๋ž˜ํ”„ ๋ผ์˜์˜ ์ถœ๋ ฅ์œผ๋กœ ์ œ์‹œ๋˜๊ธฐ ๋•Œ๋ฌธ์—, ๋‚˜๋จธ์ง€ ๋ณ€์ˆ˜๋“ค์— ๋Œ€ํ•œ ๋ฐ˜๋ณต์ ์ธ ์ ์šฉ์„ ํ†ตํ•ด ์ „์ฒด ๊ณต์ • ๋ณ€์ˆ˜๋“ค์„ ์—ฐ๊ด€์„ฑ์ด ๋†’์€ ๋ช‡๋ช‡์˜ ๋ถ€๋ถ„ ๊ทธ๋ž˜ํ”„๋กœ ๋ณ€ํ™˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ์—ฐ๊ด€์„ฑ์ด ๋‚ฎ์€ ๊ด€๊ณ„๋ฅผ ์‚ฌ์ „์— ๋ฐฐ์ œํ•จ์œผ๋กœ์จ ์ธ๊ณผ ๊ด€๊ณ„ ๋ถ„์„์˜ ๋Œ€์ƒ์„ ํฌ๊ฒŒ ์ถ•์†Œํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฆ‰, ์ด ๋‹จ๊ณ„๋ฅผ ํ†ตํ•ด ๊ณ ๋น„์šฉ์˜ ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ์˜ ํ•œ๊ณ„์ ์„ ์™„ํ™”ํ•˜๊ณ , ๊ทธ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ๋‘ ๋ฐฉ๋ฒ•์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ด์ƒ ์ง„๋‹จ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋จผ์ €, ๊ณต์ • ์ด์ƒ์ด ๋ฐœ์ƒํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๋ฐ˜๋ณต์  ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ์ ์šฉํ•˜์—ฌ ์ „์ฒด ๊ณต์ • ๋ณ€์ˆ˜๋“ค์„ ์—ฐ๊ด€์„ฑ์ด ๋†’์€ 5๊ฐœ์˜ ๋ถ€๋ถ„ ์ง‘ํ•ฉ์œผ๋กœ ๊ตฌ๋ถ„ํ•œ๋‹ค. ๊ตฌ๋ถ„๋œ ๊ฐ๊ฐ์˜ ๋ถ€๋ถ„ ์ง‘ํ•ฉ์„ ๋Œ€์ƒ์œผ๋กœ ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ๋ฅผ ์ด์šฉํ•œ ์ธ๊ณผ๊ด€๊ณ„ ์ฒ™๋„๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ , ๊ฐ€์žฅ ์œ ๋ ฅํ•œ ์›์ธ ๋ณ€์ˆ˜๋ฅผ ํŒ๋ณ„ํ•ด๋‚ธ๋‹ค. ์ฆ‰, ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ํ†ตํ•ด ํšจ๊ณผ์ ์œผ๋กœ ์ธ๊ณผ๊ด€๊ณ„ ๋ถ„์„์˜ ๋Œ€์ƒ์„ ์ถ•์†Œํ•จ์œผ๋กœ์จ ๋ถˆํ•„์š”ํ•œ ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ ๊ณ„์‚ฐ์œผ๋กœ ๋ฐœ์ƒํ•˜๋Š” ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์€ ๋Œ€๊ทœ๋ชจ ์‚ฐ์—… ๊ณต์ •์— ๋Œ€ํ•ด์„œ๋„ ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ๋ฅผ ์ด์šฉํ•œ ์ด์ƒ ์ง„๋‹จ ๊ธฐ๋ฒ•์˜ ์ ์šฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์˜ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฐ์—… ๊ทœ๋ชจ์˜ ๋ฒค์น˜๋งˆํฌ ๊ณต์ • ๋ชจ๋ธ์ธ ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ •์— ์ด๋ฅผ ์ ์šฉํ•˜๊ณ  ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ฒค์น˜๋งˆํฌ ๊ณต์ • ๋ชจ๋ธ์€ ๋‹ค์ˆ˜์˜ ๋‹จ์œ„ ๊ณต์ •์„ ํฌํ•จํ•˜๊ณ , ์žฌ์ˆœํ™˜ ํ๋ฆ„๊ณผ ํ™”ํ•™ ๋ฐ˜์‘์„ ํฌํ•จํ•˜๊ณ  ์žˆ์–ด ์‹ค์ œ ๊ณต์ •๊ณผ ๊ฐ™์€ ๋ณต์žก๋„๋ฅผ ๊ฐ–๋Š” ๊ณต์ • ๋ชจ๋ธ๋กœ์„œ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•๋ก ๋“ค์˜ ์„ฑ๋Šฅ์„ ์‹œํ—˜ํ•ด๋ณด๊ธฐ์— ์ ํ•ฉํ–ˆ๋‹ค. ์„ฑ๋Šฅ ํ…Œ์ŠคํŠธ๋Š” ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ • ๋ชจ๋ธ์— ํฌํ•จ๋˜์–ด ์žˆ๋Š” ์‚ฌ์ „์— ์ •์˜๋œ 28๊ฐœ ์ข…๋ฅ˜์˜ ๊ณต์ • ์ด์ƒ์— ๋Œ€ํ•˜์—ฌ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์„ ์ ‘๋ชฉํ•œ ๊ณต์ • ์ด์ƒ ๊ฐ์ง€ ๋ฐฉ๋ฒ•๋ก ์€ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก  ๋Œ€๋น„ ๋†’์€ ์ด์ƒ ๊ฐ์ง€์œจ์„ ๋ณด์˜€๋‹ค. ์ผ๋ถ€์˜ ๊ฒฝ์šฐ ์ด์ƒ ๊ฐ์ง€ ์ง€์—ฐ์ธก๋ฉด์—์„œ๋„ ๊ฐœ์„ ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ์ด์ƒ ์ง„๋‹จ์„ ์œ„ํ•ด ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ์™€ ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ๊ฒฐํ•ฉํ•œ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•๋ก ์€ ์ „์ฒด ๊ณต์ •์— ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ๋ฅผ ์ง์ ‘ ์ ์šฉํ•œ ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋ก  ๋Œ€๋น„ ์•ฝ 20%์˜ ๊ณ„์‚ฐ ๋น„์šฉ๋งŒ์œผ๋กœ๋„ ํšจ๊ณผ์ ์œผ๋กœ ์ด์ƒ์˜ ์›์ธ์„ ํŒŒ์•…ํ•ด๋‚ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ์„ฑ๋Šฅ ํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ๋Š” ์ผ๋ถ€ ๊ณต์ • ์ด์ƒ์˜ ๊ฒฝ์šฐ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•๋ก ์ด ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋ณด๋‹ค ๋” ์ •ํ™•ํ•œ ์ด์ƒ ์ง„๋‹จ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค.Process monitoring system is an essential component for efficient and safe operation. Process faults can affect the quality of the product or interfere with the normal operation of the process, hindering productivity. In the case of chemical processes dealing with explosive and flammable materials, process fault can act as a threat to the process safety which should be the top priority. Meanwhile, modern processes demand a more advanced monitoring system as the scope of the process expands and the process automation and intensification progress. The framework of the process monitoring system can be classified into three stages. It is divided into process fault detection that determines the existence of process faults in a system in real-time, fault diagnosis that identifies the root cause of the faults, and finally, process recovery that removes the cause of the fault and normalizes the process. In particular, various methodologies for fault detection and diagnosis have been proposed, and they can be categorized into three approaches. Data-driven methodologies are widely utilized due to the general applicability and the conditions under which abundant process data are provided compared to analytical methods based on the detailed first-principle models and knowledge-based methods on the specific domain knowledge. Furthermore, the advantage of the data-driven methods can be prominent as the scale and complexity of the process increase. In this thesis, fault detection and diagnosis methodologies to improve the performance of existing data-driven methods are proposed. Conventional data-driven fault detection systems have been developed based on dimensionality reduction methods. The fault detection models using dimensionality reduction identify the low dimensional latent space defined by features inherent in process data, performing process monitoring based on it. As the representative methods, there are principal component analysis which is the conventional multivariate process monitoring approach, and autoencoder which is one of the machine learning techniques. Although the monitoring systems using various machine learning techniques have been widely utilized thanks to sufficient process data and good performance, a monitoring scheme that improves the performance of up-to-date methods is required due to the aforementioned factors. To improve the performance of such a data-driven monitoring system, approaches that change the structure of the model or learning procedure have been mainly discussed. Meanwhile, the nature that data-driven methods are ultimately dependent on the quality of the training dataset still remains. In other words, a methodology to enhance the completeness of the monitoring system by supplementing the insufficient information in the training dataset is required. Thus, a process fault detection method that combines data augmentation techniques is proposed in the first part of the thesis. Data augmentation has been mostly employed to manage the deficiency of certain classes, between-class imbalance, in a classification problem. In this case, data augmentation can be effectively applied to improve the training performance by balancing the amount of each class. Data augmentation in this study, on the other hand, is applied to alleviate the with-in-class imbalance. The process data in normal operation has characteristics that the data samples in the borderline of normal and abnormal state are relatively sparse. Given that the modeling of the fault detection system corresponds to defining the low-dimensional feature space and monitoring the system in it, it can be expected that the supplement of the samples on the boundary of the normal state would positively affect the training process. In this context, the proposed method is as follows. First, variational autoencoder which is a generative model is constructed to generate the synthetic data using the original training data. The sample vector corresponding to the boundary region of the low-dimensional distribution of the normal state learned by the generative model is generated as the synthetic data and augmented to the original training data. Based on the augmented training data the fault detection system is established using autoencoder, a machine learning algorithm for feature extraction. The feature learning of autoencoder can be performed more effectively by using the augmented training data, which can lead to the improvement of the fault detection system that distinguishes between normal and abnormal states. The dimensionality reduction methods have been also utilized as the fault isolation method known as the contribution charts. However, the approaches showed limited performance and inconsistent analysis results due to the information loss during the dimension reduction process. To resolve the limitations of the conventional method, the approaches that directly figure out the causal relationships between process variables have been developed. As one of them, transfer entropy, an information-theoretic causality measure, is generally known to have good fault isolation performance in the fault isolation of nonlinear processes because it is neither linearity assumption nor model-based method. However, it has been limitedly applied to the small-scale process because of the drawback that the causal analysis using transfer entropy requires costly density estimation. To resolve the limitation, the method that combines graphical lasso which is a regularization method with transfer entropy is proposed. Graphical lasso is a sparse structure learning algorithm of the undirected graph model, which can be used to sort out the most relevant sub-group in the entire graph model. As graphical lasso algorithm presents the output as a highly correlated subgroup with the rest of the variables, the iterative application of graphical lasso can substitute the entire process into several subgroups. This process can greatly reduce the subject of causal analysis by excluding relationships with little relevance in advance. Accordingly, the limitation of demanding cost of transfer entropy can be mitigated and thus the applicability of fault isolation using transfer entropy can be expanded through this process. Combining the two methods, the following fault isolation method is proposed. First of all, the entire process variables are divided into the five most relevant subgroups based on the data when the fault has occurred. The root cause variable can be isolated from the most significant relationship by calculating the causality measure using transfer entropy only within each subgroup. It is possible to significantly reduce the computational cost due to transfer entropy by efficiently decreasing the subject of causal analysis through graphical lasso. Therefore, the proposed method is noteworthy in that it enables the application of fault isolation using transfer entropy for industrial-scale processes. The proposed methodologies in each stage are verified by applying them to the industrial-scale benchmark process model, the Tennessee Eastman process (TEP). The benchmark process model is suitable to test the performance of the proposed methods because it is a process model with similar complexity as a real chemical process involving multiple unit operations, recycle stream, and chemical reactions in it. The performance test is performed with respect to the 28 predefined process faults scenarios in TEP model. Application results of the proposed fault detection method performed better than the case using the conventional approach in terms of the fault detection rate. In some fault cases, the fault detection delay, the time required to first detect a fault since it occurred, also showed improvement. Fault isolation results by the proposed method integrating transfer entropy with graphical lasso showed that it could effectively identify the cause of the process fault with only about 20% of the computational cost compared to the base case that directly applied the transfer entropy to the entire process for fault isolation. In addition, the demonstration results suggested that the proposed method could outperform the base case in terms of accuracy in some particular cases.Chapter 1 Introduction -2 1.1. Research Motivation -2 1.2. Research Objectives 5 1.3. Outline of the Thesis 7 Chapter 2 Backgrounds and Preliminaries 8 2.1. Autoencoder 8 2.2. Variational Autoencoder 3 2.3. Transfer Entropy 7 2.4. Graphical Lasso 11 Chapter 3 Process Fault Detection Using Autoencoder with Data Augmentation via Variational Autoencoder 23 3.1. Introduction 23 3.2. Process Fault Detection Model Integrated with Data Augmentation 28 3.2.1. Info-Variational Autoencoder for Data Augmentation 31 3.2.2. Autoencoder for Process Monitoring 33 3.3. Case study and Discussion 34 3.3.1. Tennessee Eastman Process 35 3.3.2. Implementation of the Proposed Methodology 39 3.3.3. Discussion of the Results 64 Chapter 4 Process Fault Isolation using Transfer Entropy and Graphical Lasso 80 4.1. Introduction 80 4.2. Fault Isolation using Transfer Entropy Integrated with Graphical Lasso 86 4.2.1. Graphical Lasso for Sub-group Modeling 89 4.2.2. Transfer Entropy for Fault Isolation 90 4.3. Case study and Discussion 1 92 4.3.1. Selective Catalytic Reduction Process 92 4.3.2. Implementation of the Proposed Methodology 97 4.3.3. Discussion of the Results 99 4.4. Case study and Discussion 2 102 4.4.1. Tennessee Eastman Process 102 4.4.2. Implementation of the Proposed Methodology 108 4.4.3. Discussion of the Results 109 Chapter 5 Concluding Remarks 130 5.1. Summary of the Contributions 130 5.2. Future Work 133 Bibliography 135๋ฐ•

    Control theoretically explainable application of autoencoder methods to fault detection in nonlinear dynamic systems

    Full text link
    This paper is dedicated to control theoretically explainable application of autoencoders to optimal fault detection in nonlinear dynamic systems. Autoencoder-based learning is a standard method of machine learning technique and widely applied for fault (anomaly) detection and classification. In the context of representation learning, the so-called latent (hidden) variable plays an important role towards an optimal fault detection. In ideal case, the latent variable should be a minimal sufficient statistic. The existing autoencoder-based fault detection schemes are mainly application-oriented, and few efforts have been devoted to optimal autoencoder-based fault detection and explainable applications. The main objective of our work is to establish a framework for learning autoencoder-based optimal fault detection in nonlinear dynamic systems. To this aim, a process model form for dynamic systems is firstly introduced with the aid of control and system theory, which also leads to a clear system interpretation of the latent variable. The major efforts are devoted to the development of a control theoretical solution to the optimal fault detection problem, in which an analog concept to minimal sufficient statistic, the so-called lossless information compression, is introduced for dynamic systems and fault detection specifications. In particular, the existence conditions for such a latent variable are derived, based on which a loss function and further a learning algorithm are developed. This learning algorithm enables optimally training of autoencoders to achieve an optimal fault detection in nonlinear dynamic systems. A case study on three-tank system is given at the end of this paper to illustrate the capability of the proposed autoencoder-based fault detection and to explain the essential role of the latent variable in the proposed fault detection system

    Degradation stage classification via interpretable feature learning

    Get PDF
    Predictive maintenance (PdM) advocates for the usage of machine learning technologies to monitor asset's health conditions and plan maintenance activities accordingly. However, according to the specific degradation process, some health-related measures (e.g. temperature) may be not informative enough to reliably assess the health stage. Moreover, each measure needs to be properly treated to extract the information linked to the health stage. Those issues are usually addressed by performing a manual feature engineering, which results in high management cost and poor generalization capability of those approaches. In this work, we address this issue by coupling a health stage classifier with a feature learning mechanism. With feature learning, minimally processed data are automatically transformed into informative features. Many effective feature learning approaches are based on deep learning. With those, the features are obtained as a non-linear combination of the inputs, thus it is difficult to understand the input's contribution to the classification outcome and so the reasoning behind the model. Still, these insights are increasingly required to interpret the results and assess the reliability of the model. In this regard, we propose a feature learning approach able to (i) effectively extract high-quality features by processing different input signals, and (ii) provide useful insights about the most informative domain transformations (e.g. Fourier transform or probability density function) of the input signals (e.g. vibration or temperature). The effectiveness of the proposed approach is tested with publicly available real-world datasets about bearings' progressive deterioration and compared with the traditional feature engineering approach

    How to Do Machine Learning with Small Data? -- A Review from an Industrial Perspective

    Full text link
    Artificial intelligence experienced a technological breakthrough in science, industry, and everyday life in the recent few decades. The advancements can be credited to the ever-increasing availability and miniaturization of computational resources that resulted in exponential data growth. However, because of the insufficient amount of data in some cases, employing machine learning in solving complex tasks is not straightforward or even possible. As a result, machine learning with small data experiences rising importance in data science and application in several fields. The authors focus on interpreting the general term of "small data" and their engineering and industrial application role. They give a brief overview of the most important industrial applications of machine learning and small data. Small data is defined in terms of various characteristics compared to big data, and a machine learning formalism was introduced. Five critical challenges of machine learning with small data in industrial applications are presented: unlabeled data, imbalanced data, missing data, insufficient data, and rare events. Based on those definitions, an overview of the considerations in domain representation and data acquisition is given along with a taxonomy of machine learning approaches in the context of small data

    Spatiotemporal anomaly detection: streaming architecture and algorithms

    Get PDF
    Includes bibliographical references.2020 Summer.Anomaly detection is the science of identifying one or more rare or unexplainable samples or events in a dataset or data stream. The field of anomaly detection has been extensively studied by mathematicians, statisticians, economists, engineers, and computer scientists. One open research question remains the design of distributed cloud-based architectures and algorithms that can accurately identify anomalies in previously unseen, unlabeled streaming, multivariate spatiotemporal data. With streaming data, time is of the essence, and insights are perishable. Real-world streaming spatiotemporal data originate from many sources, including mobile phones, supervisory control and data acquisition enabled (SCADA) devices, the internet-of-things (IoT), distributed sensor networks, and social media. Baseline experiments are performed on four (4) non-streaming, static anomaly detection multivariate datasets using unsupervised offline traditional machine learning (TML), and unsupervised neural network techniques. Multiple architectures, including autoencoders, generative adversarial networks, convolutional networks, and recurrent networks, are adapted for experimentation. Extensive experimentation demonstrates that neural networks produce superior detection accuracy over TML techniques. These same neural network architectures can be extended to process unlabeled spatiotemporal streaming using online learning. Space and time relationships are further exploited to provide additional insights and increased anomaly detection accuracy. A novel domain-independent architecture and set of algorithms called the Spatiotemporal Anomaly Detection Environment (STADE) is formulated. STADE is based on federated learning architecture. STADE streaming algorithms are based on a geographically unique, persistently executing neural networks using online stochastic gradient descent (SGD). STADE is designed to be pluggable, meaning that alternative algorithms may be substituted or combined to form an ensemble. STADE incorporates a Stream Anomaly Detector (SAD) and a Federated Anomaly Detector (FAD). The SAD executes at multiple locations on streaming data, while the FAD executes at a single server and identifies global patterns and relationships among the site anomalies. Each STADE site streams anomaly scores to the centralized FAD server for further spatiotemporal dependency analysis and logging. The FAD is based on recent advances in DNN-based federated learning. A STADE testbed is implemented to facilitate globally distributed experimentation using low-cost, commercial cloud infrastructure provided by Microsoftโ„ข. STADE testbed sites are situated in the cloud within each continent: Africa, Asia, Australia, Europe, North America, and South America. Communication occurs over the commercial internet. Three STADE case studies are investigated. The first case study processes commercial air traffic flows, the second case study processes global earthquake measurements, and the third case study processes social media (i.e., Twitterโ„ข) feeds. These case studies confirm that STADE is a viable architecture for the near real-time identification of anomalies in streaming data originating from (possibly) computationally disadvantaged, geographically dispersed sites. Moreover, the addition of the FAD provides enhanced anomaly detection capability. Since STADE is domain-independent, these findings can be easily extended to additional application domains and use cases
    • โ€ฆ
    corecore