1,464 research outputs found

    ๋งค๊ฐœ๋ถ„ํฌ๊ทผ์‚ฌ๋ฅผ ํ†ตํ•œ ๊ณต์ •์‹œ์Šคํ…œ ๊ณตํ•™์—์„œ์˜ ํ™•๋ฅ ๊ธฐ๊ณ„ํ•™์Šต ์ ‘๊ทผ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2021.8. ์ด์ข…๋ฏผ.With the rapid development of measurement technology, higher quality and vast amounts of process data become available. Nevertheless, process data are โ€˜scarceโ€™ in many cases as they are sampled only at certain operating conditions while the dimensionality of the system is large. Furthermore, the process data are inherently stochastic due to the internal characteristics of the system or the measurement noises. For this reason, uncertainty is inevitable in process systems, and estimating it becomes a crucial part of engineering tasks as the prediction errors can lead to misguided decisions and cause severe casualties or economic losses. A popular approach to this is applying probabilistic inference techniques that can model the uncertainty in terms of probability. However, most of the existing probabilistic inference techniques are based on recursive sampling, which makes it difficult to use them for industrial applications that require processing a high-dimensional and massive amount of data. To address such an issue, this thesis proposes probabilistic machine learning approaches based on parametric distribution approximation, which can model the uncertainty of the system and circumvent the computational complexity as well. The proposed approach is applied for three major process engineering tasks: process monitoring, system modeling, and process design. First, a process monitoring framework is proposed that utilizes a probabilistic classifier for fault classification. To enhance the accuracy of the classifier and reduce the computational cost for its training, a feature extraction method called probabilistic manifold learning is developed and applied to the process data ahead of the fault classification. We demonstrate that this manifold approximation process not only reduces the dimensionality of the data but also casts the data into a clustered structure, making the classifier have a low dependency on the type and dimension of the data. By exploiting this property, non-metric information (e.g., fault labels) of the data is effectively incorporated and the diagnosis performance is drastically improved. Second, a probabilistic modeling approach based on Bayesian neural networks is proposed. The parameters of deep neural networks are transformed into Gaussian distributions and trained using variational inference. The redundancy of the parameter is autonomously inferred during the model training, and insignificant parameters are eliminated a posteriori. Through a verification study, we demonstrate that the proposed approach can not only produce high-fidelity models that describe the stochastic behaviors of the system but also produce the optimal model structure. Finally, a novel process design framework is proposed based on reinforcement learning. Unlike the conventional optimization methods that recursively evaluate the objective function to find an optimal value, the proposed method approximates the objective function surface by parametric probabilistic distributions. This allows learning the continuous action policy without introducing any cumbersome discretization process. Moreover, the probabilistic policy gives means for effective control of the exploration and exploitation rates according to the certainty information. We demonstrate that the proposed framework can learn process design heuristics during the solution process and use them to solve similar design problems.๊ณ„์ธก๊ธฐ์ˆ ์˜ ๋ฐœ๋‹ฌ๋กœ ์–‘์งˆ์˜, ๊ทธ๋ฆฌ๊ณ  ๋ฐฉ๋Œ€ํ•œ ์–‘์˜ ๊ณต์ • ๋ฐ์ดํ„ฐ์˜ ์ทจ๋“์ด ๊ฐ€๋Šฅํ•ด์กŒ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋งŽ์€ ๊ฒฝ์šฐ ์‹œ์Šคํ…œ ์ฐจ์›์˜ ํฌ๊ธฐ์— ๋น„ํ•ด์„œ ์ผ๋ถ€ ์šด์ „์กฐ๊ฑด์˜ ๊ณต์ • ๋ฐ์ดํ„ฐ๋งŒ์ด ์ทจ๋“๋˜๊ธฐ ๋•Œ๋ฌธ์—, ๊ณต์ • ๋ฐ์ดํ„ฐ๋Š” โ€˜ํฌ์†Œโ€™ํ•˜๊ฒŒ ๋œ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๊ณต์ • ๋ฐ์ดํ„ฐ๋Š” ์‹œ์Šคํ…œ ๊ฑฐ๋™ ์ž์ฒด์™€ ๋”๋ถˆ์–ด ๊ณ„์ธก์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋…ธ์ด์ฆˆ๋กœ ์ธํ•œ ๋ณธ์งˆ์ ์ธ ํ™•๋ฅ ์  ๊ฑฐ๋™์„ ๋ณด์ธ๋‹ค. ๋”ฐ๋ผ์„œ ์‹œ์Šคํ…œ์˜ ์˜ˆ์ธก๋ชจ๋ธ์€ ์˜ˆ์ธก ๊ฐ’์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๊ธฐ์ˆ ํ•˜๋Š” ๊ฒƒ์ด ์š”๊ตฌ๋˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ์˜ค์ง„์„ ์˜ˆ๋ฐฉํ•˜๊ณ  ์ž ์žฌ์  ์ธ๋ช… ํ”ผํ•ด์™€ ๊ฒฝ์ œ์  ์†์‹ค์„ ๋ฐฉ์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด์— ๋Œ€ํ•œ ๋ณดํŽธ์ ์ธ ์ ‘๊ทผ๋ฒ•์€ ํ™•๋ฅ ์ถ”์ •๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋Ÿฌํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ์ •๋Ÿ‰ํ™” ํ•˜๋Š” ๊ฒƒ์ด๋‚˜, ํ˜„์กดํ•˜๋Š” ์ถ”์ •๊ธฐ๋ฒ•๋“ค์€ ์žฌ๊ท€์  ์ƒ˜ํ”Œ๋ง์— ์˜์กดํ•˜๋Š” ํŠน์„ฑ์ƒ ๊ณ ์ฐจ์›์ด๋ฉด์„œ๋„ ๋‹ค๋Ÿ‰์ธ ๊ณต์ •๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๊ทผ๋ณธ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง„๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋งค๊ฐœ๋ถ„ํฌ๊ทผ์‚ฌ์— ๊ธฐ๋ฐ˜ํ•œ ํ™•๋ฅ ๊ธฐ๊ณ„ํ•™์Šต์„ ์ ์šฉํ•˜์—ฌ ์‹œ์Šคํ…œ์— ๋‚ด์žฌ๋œ ๋ถˆํ™•์‹ค์„ฑ์„ ๋ชจ๋ธ๋งํ•˜๋ฉด์„œ๋„ ๋™์‹œ์— ๊ณ„์‚ฐ ํšจ์œจ์ ์ธ ์ ‘๊ทผ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋จผ์ €, ๊ณต์ •์˜ ๋ชจ๋‹ˆํ„ฐ๋ง์— ์žˆ์–ด ๊ฐ€์šฐ์‹œ์•ˆ ํ˜ผํ•ฉ ๋ชจ๋ธ (Gaussian mixture model)์„ ๋ถ„๋ฅ˜์ž๋กœ ์‚ฌ์šฉํ•˜๋Š” ํ™•๋ฅ ์  ๊ฒฐํ•จ ๋ถ„๋ฅ˜ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ด๋•Œ ๋ถ„๋ฅ˜์ž์˜ ํ•™์Šต์—์„œ์˜ ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ์ €์ฐจ์›์œผ๋กœ ํˆฌ์˜์‹œํ‚ค๋Š”๋ฐ, ์ด๋ฅผ ์œ„ํ•œ ํ™•๋ฅ ์  ๋‹ค์–‘์ฒด ํ•™์Šต (probabilistic manifold learn-ing) ๋ฐฉ๋ฒ•์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘์ฒด (manifold)๋ฅผ ๊ทผ์‚ฌํ•˜์—ฌ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ ์‚ฌ์ด์˜ ์Œ๋ณ„ ์šฐ๋„ (pairwise likelihood)๋ฅผ ๋ณด์กดํ•˜๋Š” ํˆฌ์˜๋ฒ•์ด ์‚ฌ์šฉ๋œ๋‹ค. ์ด๋ฅผ ํ†ตํ•˜์—ฌ ๋ฐ์ดํ„ฐ์˜ ์ข…๋ฅ˜์™€ ์ฐจ์›์— ์˜์กด๋„๊ฐ€ ๋‚ฎ์€ ์ง„๋‹จ ๊ฒฐ๊ณผ๋ฅผ ์–ป์Œ๊ณผ ๋™์‹œ์— ๋ฐ์ดํ„ฐ ๋ ˆ์ด๋ธ”๊ณผ ๊ฐ™์€ ๋น„๊ฑฐ๋ฆฌ์  (non-metric) ์ •๋ณด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ๊ฒฐํ•จ ์ง„๋‹จ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ๋‘˜์งธ๋กœ, ๋ฒ ์ด์ง€์•ˆ ์‹ฌ์ธต ์‹ ๊ฒฝ๋ง(Bayesian deep neural networks)์„ ์‚ฌ์šฉํ•œ ๊ณต์ •์˜ ํ™•๋ฅ ์  ๋ชจ๋ธ๋ง ๋ฐฉ๋ฒ•๋ก ์ด ์ œ์‹œ๋˜์—ˆ๋‹ค. ์‹ ๊ฒฝ๋ง์˜ ๊ฐ ๋งค๊ฐœ๋ณ€์ˆ˜๋Š” ๊ฐ€์šฐ์Šค ๋ถ„ํฌ๋กœ ์น˜ํ™˜๋˜๋ฉฐ, ๋ณ€๋ถ„์ถ”๋ก  (variational inference)์„ ํ†ตํ•˜์—ฌ ๊ณ„์‚ฐ ํšจ์œจ์ ์ธ ํ›ˆ๋ จ์ด ์ง„ํ–‰๋œ๋‹ค. ํ›ˆ๋ จ์ด ๋๋‚œ ํ›„ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์œ ํšจ์„ฑ์„ ์ธก์ •ํ•˜์—ฌ ๋ถˆํ•„์š”ํ•œ ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ์†Œ๊ฑฐํ•˜๋Š” ์‚ฌํ›„ ๋ชจ๋ธ ์••์ถ• ๋ฐฉ๋ฒ•์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋ฐ˜๋„์ฒด ๊ณต์ •์— ๋Œ€ํ•œ ์‚ฌ๋ก€ ์—ฐ๊ตฌ๋Š” ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ๊ณต์ •์˜ ๋ณต์žกํ•œ ๊ฑฐ๋™์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋ง ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ชจ๋ธ์˜ ์ตœ์  ๊ตฌ์กฐ๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ถ„ํฌํ˜• ์‹ฌ์ธต ์‹ ๊ฒฝ๋ง์„ ์‚ฌ์šฉํ•œ ๊ฐ•ํ™”ํ•™์Šต์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ํ™•๋ฅ ์  ๊ณต์ • ์„ค๊ณ„ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ตœ์ ์น˜๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด ์žฌ๊ท€์ ์œผ๋กœ ๋ชฉ์  ํ•จ์ˆ˜ ๊ฐ’์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ธฐ์กด์˜ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋ก ๊ณผ ๋‹ฌ๋ฆฌ, ๋ชฉ์  ํ•จ์ˆ˜ ๊ณก๋ฉด (objective function surface)์„ ๋งค๊ฐœํ™” ๋œ ํ™•๋ฅ ๋ถ„ํฌ๋กœ ๊ทผ์‚ฌํ•˜๋Š” ์ ‘๊ทผ๋ฒ•์ด ์ œ์‹œ๋˜์—ˆ๋‹ค. ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ด์‚ฐํ™” (discretization)๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์—ฐ์†์  ํ–‰๋™ ์ •์ฑ…์„ ํ•™์Šตํ•˜๋ฉฐ, ํ™•์‹ค์„ฑ (certainty)์— ๊ธฐ๋ฐ˜ํ•œ ํƒ์ƒ‰ (exploration) ๋ฐ ํ™œ์šฉ (exploi-tation) ๋น„์œจ์˜ ์ œ์–ด๊ฐ€ ํšจ์œจ์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง„๋‹ค. ์‚ฌ๋ก€ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ๊ณต์ •์˜ ์„ค๊ณ„์— ๋Œ€ํ•œ ๊ฒฝํ—˜์ง€์‹ (heuristic)์„ ํ•™์Šตํ•˜๊ณ  ์œ ์‚ฌํ•œ ์„ค๊ณ„ ๋ฌธ์ œ์˜ ํ•ด๋ฅผ ๊ตฌํ•˜๋Š” ๋ฐ ์ด์šฉํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.Chapter 1 Introduction 1 1.1. Motivation 1 1.2. Outline of the thesis 5 Chapter 2 Backgrounds and preliminaries 9 2.1. Bayesian inference 9 2.2. Monte Carlo 10 2.3. Kullback-Leibler divergence 11 2.4. Variational inference 12 2.5. Riemannian manifold 13 2.6. Finite extended-pseudo-metric space 16 2.7. Reinforcement learning 16 2.8. Directed graph 19 Chapter 3 Process monitoring and fault classification with probabilistic manifold learning 20 3.1. Introduction 20 3.2. Methods 25 3.2.1. Uniform manifold approximation 27 3.2.2. Clusterization 28 3.2.3. Projection 31 3.2.4. Mapping of unknown data query 32 3.2.5. Inference 33 3.3. Verification study 38 3.3.1. Dataset description 38 3.3.2. Experimental setup 40 3.3.3. Process monitoring 43 3.3.4. Projection characteristics 47 3.3.5. Fault diagnosis 50 3.3.6. Computational Aspects 56 Chapter 4 Process system modeling with Bayesian neural networks 59 4.1. Introduction 59 4.2. Methods 63 4.2.1. Long Short-Term Memory (LSTM) 63 4.2.2. Bayesian LSTM (BLSTM) 66 4.3. Verification study 68 4.3.1. System description 68 4.3.2. Estimation of the plasma variables 71 4.3.3. Dataset description 72 4.3.4. Experimental setup 72 4.3.5. Weight regularization during training 78 4.3.6. Modeling complex behaviors of the system 80 4.3.7. Uncertainty quantification and model compression 85 Chapter 5 Process design based on reinforcement learning with distributional actor-critic networks 89 5.1. Introduction 89 5.2. Methods 93 5.2.1. Flowsheet hashing 93 5.2.2. Behavioral cloning 99 5.2.3. Neural Monte Carlo tree search (N-MCTS) 100 5.2.4. Distributional actor-critic networks (DACN) 105 5.2.5. Action masking 110 5.3. Verification study 110 5.3.1. System description 110 5.3.2. Experimental setup 111 5.3.3. Result and discussions 115 Chapter 6 Concluding remarks 120 6.1. Summary of the contributions 120 6.2. Future works 122 Appendix 125 A.1. Proof of Lemma 1 125 A.2. Performance indices for dimension reduction 127 A.3. Model equations for process units 130 Bibliography 132 ์ดˆ ๋ก 149๋ฐ•

    On the relevance of preprocessing in predictive maintenance for dynamic systems

    Get PDF
    The complexity involved in the process of real-time data-driven monitoring dynamic systems for predicted maintenance is usually huge. With more or less in-depth any data-driven approach is sensitive to data preprocessing, understood as any data treatment prior to the application of the monitoring model, being sometimes crucial for the final development of the employed monitoring technique. The aim of this work is to quantify the sensitiveness of data-driven predictive maintenance models in dynamic systems in an exhaustive way. We consider a couple of predictive maintenance scenarios, each of them defined by some public available data. For each scenario, we consider its properties and apply several techniques for each of the successive preprocessing steps, e.g. data cleaning, missing values treatment, outlier detection, feature selection, or imbalance compensation. The pretreatment configurations, i.e. sequential combinations of techniques from different preprocessing steps, are considered together with different monitoring approaches, in order to determine the relevance of data preprocessing for predictive maintenance in dynamical systems

    A novel bearing multi-fault diagnosis approach based on weighted permutation entropy and an improved SVM ensemble classifier

    Get PDF
    Timely and accurate state detection and fault diagnosis of rolling element bearings are very critical to ensuring the reliability of rotating machinery. This paper proposes a novel method of rolling bearing fault diagnosis based on a combination of ensemble empirical mode decomposition (EEMD), weighted permutation entropy (WPE) and an improved support vector machine (SVM) ensemble classifier. A hybrid voting (HV) strategy that combines SVM-based classifiers and cloud similarity measurement (CSM) was employed to improve the classification accuracy. First, the WPE value of the bearing vibration signal was calculated to detect the fault. Secondly, if a bearing fault occurred, the vibration signal was decomposed into a set of intrinsic mode functions (IMFs) by EEMD. The WPE values of the first several IMFs were calculated to form the fault feature vectors. Then, the SVM ensemble classifier was composed of binary SVM and the HV strategy to identify the bearing multi-fault types. Finally, the proposed model was fully evaluated by experiments and comparative studies. The results demonstrate that the proposed method can effectively detect bearing faults and maintain a high accuracy rate of fault recognition when a small number of training samples are available

    Ensemble deep learning: A review

    Get PDF
    Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions

    A Review of Kernel Methods for Feature Extraction in Nonlinear Process Monitoring

    Get PDF
    Kernel methods are a class of learning machines for the fast recognition of nonlinear patterns in any data set. In this paper, the applications of kernel methods for feature extraction in industrial process monitoring are systematically reviewed. First, we describe the reasons for using kernel methods and contextualize them among other machine learning tools. Second, by reviewing a total of 230 papers, this work has identified 12 major issues surrounding the use of kernel methods for nonlinear feature extraction. Each issue was discussed as to why they are important and how they were addressed through the years by many researchers. We also present a breakdown of the commonly used kernel functions, parameter selection routes, and case studies. Lastly, this review provides an outlook into the future of kernel-based process monitoring, which can hopefully instigate more advanced yet practical solutions in the process industries

    Maximizing Model Generalization for Machine Condition Monitoring with Self-Supervised Learning and Federated Learning

    Full text link
    Deep Learning (DL) can diagnose faults and assess machine health from raw condition monitoring data without manually designed statistical features. However, practical manufacturing applications remain extremely difficult for existing DL methods. Machine data is often unlabeled and from very few health conditions (e.g., only normal operating data). Furthermore, models often encounter shifts in domain as process parameters change and new categories of faults emerge. Traditional supervised learning may struggle to learn compact, discriminative representations that generalize to these unseen target domains since it depends on having plentiful classes to partition the feature space with decision boundaries. Transfer Learning (TL) with domain adaptation attempts to adapt these models to unlabeled target domains but assumes similar underlying structure that may not be present if new faults emerge. This study proposes focusing on maximizing the feature generality on the source domain and applying TL via weight transfer to copy the model to the target domain. Specifically, Self-Supervised Learning (SSL) with Barlow Twins may produce more discriminative features for monitoring health condition than supervised learning by focusing on semantic properties of the data. Furthermore, Federated Learning (FL) for distributed training may also improve generalization by efficiently expanding the effective size and diversity of training data by sharing information across multiple client machines. Results show that Barlow Twins outperforms supervised learning in an unlabeled target domain with emerging motor faults when the source training data contains very few distinct categories. Incorporating FL may also provide a slight advantage by diffusing knowledge of health conditions between machines

    Geometry- and Accuracy-Preserving Random Forest Proximities with Applications

    Get PDF
    Many machine learning algorithms use calculated distances or similarities between data observations to make predictions, cluster similar data, visualize patterns, or generally explore the data. Most distances or similarity measures do not incorporate known data labels and are thus considered unsupervised. Supervised methods for measuring distance exist which incorporate data labels and thereby exaggerate separation between data points of different classes. This approach tends to distort the natural structure of the data. Instead of following similar approaches, we leverage a popular algorithm used for making data-driven predictions, known as random forests, to naturally incorporate data labels into similarity measures known as random forest proximities. In this dissertation, we explore previously defined random forest proximities and demonstrate their weaknesses in popular proximity-based applications. Additionally, we develop a new proximity definition that can be used to recreate the random forestโ€™s predictions. We call these random forest-geometry-and accuracy-Preserving proximities or RF-GAP. We show by proof and empirical demonstration can be used to perfectly reconstruct the random forestโ€™s predictions and, as a result, we argue that RF-GAP proximities provide a truer representation of the random forestโ€™s learning when used in proximity-based applications. We provide evidence to suggest that RF-GAP proximities improve applications including imputing missing data, detecting outliers, and visualizing the data. We also introduce a new random forest proximity-based technique that can be used to generate 2- or 3-dimensional data representations which can be used as a tool to visually explore the data. We show that this method does well at portraying the relationship between data variables and the data labels. We show quantitatively and qualitatively that this method surpasses other existing methods for this task
    • โ€ฆ
    corecore