84 research outputs found

    Fuzzy matching template attacks on multivariate cryptography : a case study

    Get PDF
    Multivariate cryptography is one of the most promising candidates for post-quantum cryptography. Applying machine learning techniques in this paper, we experimentally investigate the side-channel security of the multivariate cryptosystems, which seriously threatens the hardware implementations of cryptographic systems. Generally, registers are required to store values of monomials and polynomials during the encryption of multivariate cryptosystems. Based on maximum-likelihood and fuzzy matching techniques, we propose a template-based least-square technique to efficiently exploit the side-channel leakage of registers. Using QUAD for a case study, which is a typical multivariate cryptosystem with provable security, we perform our attack against both serial and parallel QUAD implementations on field programmable gate array (FPGA). Experimental results show that our attacks on both serial and parallel implementations require only about 30 and 150 power traces, respectively, to successfully reveal the secret key with a success rate close to 100%. Finally, efficient and low-cost strategies are proposed to resist side-channel attacks

    Under Quantum Computer Attack: Is Rainbow a Replacement of RSA and Elliptic Curves on Hardware?

    Get PDF
    Among cryptographic systems, multivariate signature is one of the most popular candidates since it has the potential to resist quantum computer attacks. Rainbow belongs to the multivariate signature, which can be viewed as a multilayer unbalanced Oil-Vinegar system. In this paper, we present techniques to exploit Rainbow signature on hardware meeting the requirements of efficient high-performance applications. We propose a general architecture for efficient hardware implementations of Rainbow and enhance our design in three directions. First, we present a fast inversion based on binary trees. Second, we present an efficient multiplication based on compact construction in composite fields. Third, we present a parallel solving system of linear equations based on Gauss-Jordan elimination. Via further other minor optimizations and by integrating the major improvement above, we implement our design in composite fields on standard cell CMOS Application Specific Integrated Circuits (ASICs). The experimental results show that our implementation takes 4.9 us and 242 clock cycles to generate a Rainbow signature with the frequency of 50 MHz. Comparison results show that our design is more efficient than the RSA and ECC implementations

    Separating Oil and Vinegar with a Single Trace

    Get PDF
    Due to recent cryptanalytical breakthroughs, the multivariate signature schemes that seemed to be most promising in the past years are no longer in the focus of the research community. Hence, the cryptographically mature UOV scheme is of great interest again. Since it has not been part of the NIST process for standardizing post-quantum cryptography so far, it has not been studied intensively for its physical security. In this work, we present a side-channel attack on the latest implementation of UOV. In the first part of the attack, a single side-channel trace of the signing process is used to learn all vinegar variables used in the computation. Then, we employ a combination of the Kipnis-Shamir attack and the reconciliation attack to reveal the complete secret key. Our attack, unlike previous work, targets the inversion of the central map and not the subsequent linear transformation. It further does not require the attacker to control the message to be signed. We have verified the practicality of our attack on a ChipWhisperer-Lite board with a 32-bit STM32F3 ARM Cortex-M4 target mounted on a CW308 UFO board. We publicly provide the code and both reference and target traces. Additionally, we discuss several countermeasures that can at least make our attack less efficient

    QuantumHammer: A Practical Hybrid Attack on the LUOV Signature Scheme

    Get PDF
    Post-quantum schemes are expected to replace existing public-key schemes within a decade in billions of devices. To facilitate the transition, the US National Institute for Standards and Technology (NIST) is running a standardization process. Multivariate signatures is one of the main categories in NIST\u27s post-quantum cryptography competition. Among the four candidates in this category, the LUOV and Rainbow schemes are based on the Oil and Vinegar scheme, first introduced in 1997 which has withstood over two decades of cryptanalysis. Beyond mathematical security and efficiency, security against side-channel attacks is a major concern in the competition. The current sentiment is that post-quantum schemes may be more resistant to fault-injection attacks due to their large key sizes and the lack of algebraic structure. We show that this is not true. We introduce a novel hybrid attack, QuantumHammer, and demonstrate it on the constant-time implementation of LUOV currently in Round 2 of the NIST post-quantum competition. The QuantumHammer attack is a combination of two attacks, a bit-tracing attack enabled via Rowhammer fault injection and a divide and conquer attack that uses bit-tracing as an oracle. Using bit-tracing, an attacker with access to faulty signatures collected using Rowhammer attack, can recover secret key bits albeit slowly. We employ a divide and conquer attack which exploits the structure in the key generation part of LUOV and solves the system of equations for the secret key more efficiently with few key bits recovered via bit-tracing. We have demonstrated the first successful in-the-wild attack on LUOV recovering all 11K key bits with less than 4 hours of an active Rowhammer attack. The post-processing part is highly parallel and thus can be trivially sped up using modest resources. QuantumHammer does not make any unrealistic assumptions, only requires software co-location (no physical access), and therefore can be used to target shared cloud servers or in other sandboxed environments

    Envisioning the Future of Cyber Security in Post-Quantum Era: A Survey on PQ Standardization, Applications, Challenges and Opportunities

    Full text link
    The rise of quantum computers exposes vulnerabilities in current public key cryptographic protocols, necessitating the development of secure post-quantum (PQ) schemes. Hence, we conduct a comprehensive study on various PQ approaches, covering the constructional design, structural vulnerabilities, and offer security assessments, implementation evaluations, and a particular focus on side-channel attacks. We analyze global standardization processes, evaluate their metrics in relation to real-world applications, and primarily focus on standardized PQ schemes, selected additional signature competition candidates, and PQ-secure cutting-edge schemes beyond standardization. Finally, we present visions and potential future directions for a seamless transition to the PQ era

    One vector to rule them all: Key recovery from one vector in UOV schemes

    Get PDF
    Unbalanced Oil and Vinegar is a multivariate signature scheme that was introduced in 1999. Most multivariate candidates for signature schemes at NIST\u27s PQC standardization process are either based on UOV or closely related to it. The UOV trapdoor is a secret subspace, the oil subspace . We show how to recover an equivalent secret key from the knowledge of a single vector in the oil subspace in any characteristic. The reconciliation attack was sped-up by adding some bilinear equations in the subsequent computations, and able to conclude after two vectors were found. We show here that these bilinear equations contain enough information to dismiss the quadratic equations and retrieve the secret subspace with linear algebra for practical parametrizations of UOV, in at most 15 seconds for modern instanciations of UOV. This proves that the security of the UOV scheme lies in the complexity of finding exactly one vector in the oil space. In addition, we deduce a key recovery attack from any forgery attack by applying a corollary of our main result. We show how to extend this result to schemes related to UOV, such as MAYO and VOX

    Secure Hardware Implementation of Post Quantum Cryptosystems

    Get PDF
    Solving a hard mathematical problem is the security basis of all current cryptographic systems. With the realization of a large scale quantum computer, hard mathematical problems such as integer factorization and discrete logarithmic problems will be easily solved with special algorithms implemented on such a computer. Indeed, only post-quantum cryptosystems which defy quantum attacks will survive in the post-quantum era. Each newly proposed post-quantum cryptosystem has to be scrutinized against all different types of attacks. Attacks can be classified into mathematical cryptanalysis and side channel attacks. In this thesis, we propose secure hardware implementations against side channel attacks for two of the most promising post-quantum algorithms: the lattice-based public key cryptosystem, NTRU, and the multivariate public key cryptosystem, Rainbow, against power analysis attacks and fault analysis attacks, respectively. NTRUEncrypt is a family of public key cryptosystems that uses lattice-based cryptography. It has been accepted as an IEEE P1363 standard and as an X9.98 Standard. In addition to its small footprint compared to other number theory based public key systems, its resistance to quantum attacks makes it a very attractive candidate for post quantum cryptosystems. On the other hand, similar to other cryptographic schemes, unprotected hardware implementations of NTRUEncrypt are susceptible to side channel attacks such as timing and power analysis. In this thesis, we present an FPGA implementation of NTRUEncrypt which is resistant to first order differential power analysis (DPA) attacks. Our countermeasures are implemented at the architecture level. In particular, we split the ciphertext into two randomly generated shares. This guarantees that during the first step of the decryption process, the inputs to the convolution modules, which are convoluted with the secret key polynomial, are uniformly chosen random polynomials which are freshly generated for each convolution operation and are not under the control of the attacker. The two shares are then processed in parallel without explicitly combining them until the final stage of the decryption. Furthermore, during the final stage of the decryption, we also split the used secret key polynomial into two randomly generated shares which provides theoretical resistance against the considered class of power analysis attacks. The proposed architecture is implemented using Altera Cyclone IV FPGA and simulated on Quartus II in order to compare the non-masked architecture with the masked one. For the considered set of parameters, the area overhead of the protected implementation is about 60% while the latency overhead is between 1.4% to 6.9%. Multivariate Public Key Cryptosystems (MPKCs) are cryptographic schemes based on the difficulty of solving a set of multivariate system of nonlinear equations over a finite field. MPKCs are considered to be secure against quantum attacks. Rainbow, an MPKC signature scheme, is among the leading MPKC candidates for post quantum cryptography. In this thesis, we propose and compare two fault analysis-resistant implementations for the Rainbow signature scheme. The hardware platform for our implementations is Xilinx FPGA Virtex 7 family. Our implementation for the Rainbow signature completes in 191 cycles using a 20ns clock period which is an improvement over the previously reported implementations. The verification completes in 141 cycles using the same clock period. The two proposed fault analysis-resistant schemes offer different levels of protections and increase the area overhead by a factor of 33% and 9%, respectively. The first protection scheme acquires a time overhead of about 72%, but the second one does not have any time overhead

    Signing Information in the Quantum Era

    Get PDF
    Signatures are primarily used as a mark of authenticity, to demonstrate that the sender of a message is who they claim to be. In the current digital age, signatures underpin trust in the vast majority of information that we exchange, particularly on public networks such as the internet. However, schemes for signing digital information which are based on assumptions of computational complexity are facing challenges from advances in mathematics, the capability of computers, and the advent of the quantum era. Here we present a review of digital signature schemes, looking at their origins and where they are under threat. Next, we introduce post-quantum digital schemes, which are being developed with the specific intent of mitigating against threats from quantum algorithms whilst still relying on digital processes and infrastructure. Finally, we review schemes for signing information carried on quantum channels, which promise provable security metrics. Signatures were invented as a practical means of authenticating communications and it is important that the practicality of novel signature schemes is considered carefully, which is kept as a common theme of interest throughout this review

    HaMAYO: A Reconfigurable Hardware Implementation of the Post-Quantum Signature Scheme MAYO

    Get PDF
    MAYO is a topical modification of the established multivariate signature scheme Unbalanced Oil and Vinegar (UOV), with a significantly reduced public key size while maintaining the appealing properties of UOV, like short signatures and fast verification. Therefore, MAYO is considered an attractive candidate in the NIST standardization process for additional post-quantum signatures and an adequate solution for real-world deployment in resource-constrained devices. This paper presents the first hardware implementation of the signature scheme MAYO. Our implementation can be easily integrated with different FPGA architectures. Additionally, it includes an agile instantiation with respect to the NIST-defined security levels for long-term security and encompasses modules\u27 optimizations such as the vector-matrix multiplication and the Gaussian elimination method employed during the signing process. Our implementation is tested on the Zynq ZedBoard with the Zynq-7020 SoC and its performance is evaluated and compared to its counterpart multivariate scheme UOV

    Implementation Attacks on Post-Quantum Cryptographic Schemes

    Get PDF
    Post-quantum cryptographic schemes have been developed in the last decade in response to the rise of quantum computers. Fortunately, several schemes have been developed with quantum resistance. However, there is very little effort in evaluating and comparing these schemes in the embedded settings. Low cost embedded devices represents a highly-constraint environment that challenges all post-quantum cryptographic schemes. Moreover, there are even fewer efforts in evaluating the security of these schemes against implementation attacks including side-channel and fault attacks. It is commonly accepted that, any embedded cryptographic module that is built without a sound countermeasure, can be easily broken. Therefore, we investigate the question: Are we ready to implement post-quantum cryptographic schemes on embedded systems? We present an exhaustive survey of research efforts in designing embedded modules of post-quantum cryptographic schemes and the efforts in securing these modules against implementation attacks. Unfortunately, the study shows that: we are not ready yet to implement any post-quantum cryptographic scheme in practical embedded systems. There is still a considerable amount of research that needs to be conducted before reaching a satisfactory level of security
    • 

    corecore