78 research outputs found

    Generalising Fault Attacks to Genus Two Isogeny Cryptosystems

    Get PDF
    In this paper, we generalise the SIDH fault attack and the SIDH loop-abort fault attacks on supersingular isogeny cryptosystems (genus-1) to genus-2. Genus-2 isogeny-based cryptosystems are generalisations of its genus-1 counterpart, as such, attacks on the latter are believed to generalise to the former. The point perturbation attack on supersingular elliptic curve isogeny cryptography has been shown to be practical. We show in this paper that this fault attack continues to be practical in genus-2, albeit with a few additional traces required. We also show that the loop-abort attack carries over to the genus-2 setting seamlessly. This article is a minor revision of the version accepted to the workshop Fault Diagnosis and Tolerance in Cryptography 2022 (FDTC 2022)

    Faulty isogenies: a new kind of leakage

    Get PDF
    In SIDH and SIKE protocols, public keys are defined over quadratic extensions of prime fields. We present in this work a projective invariant property characterizing affine Montgomery curves defined over prime fields. We then force a secret 3-isogeny chain to repeatedly pass through a curve defined over a prime field in order to exploit the new property and inject zeros in the A-coefficient of an intermediate curve to successfully recover the isogeny chain one step at a time. Our results introduce a new kind of fault attacks applicable to SIDH and SIKE

    Safe-Error Attacks on SIKE and CSIDH

    Get PDF
    The isogeny-based post-quantum schemes SIKE (NIST PQC round 3 alternate candidate) and CSIDH (Asiacrypt 2018) have received only little attention with respect to their fault attack resilience so far. We aim to fill this gap and provide a better understanding of their vulnerability by analyzing their resistance towards safe-error attacks. We present four safe-error attacks, two against SIKE and two against a constant-time implementation of CSIDH that uses dummy isogenies. The attacks use targeted bitflips during the respective isogeny-graph traversals. All four attacks lead to full key recovery. By using voltage and clock glitching, we physically carried out two of the attacks - one against each scheme -, thus demonstrate that full key recovery is also possible in practice

    SIKE Channels

    Get PDF
    We present new side-channel attacks on SIKE, the isogeny-based candidate in the NIST PQC competition. Previous works had shown that SIKE is vulnerable to differential power analysis and pointed to coordinate randomization as an effective countermeasure. We show that coordinate randomization alone is not sufficient, as SIKE is vulnerable to a class of attacks similar to refined power analysis in elliptic curve cryptography, named zero-value attacks. We describe and confirm in the lab two such attacks leading to full key recovery, and analyze their countermeasures

    Genus Two Isogeny Cryptography

    Get PDF
    We study (ℓ,ℓ)(\ell,\ell)-isogeny graphs of principally polarised supersingular abelian surfaces (PPSSAS). The (ℓ,ℓ)(\ell,\ell)-isogeny graph has cycles of small length that can be used to break the collision resistance assumption of the genus two isogeny hash function suggested by Takashima. Algorithms for computing (2,2)(2,2)-isogenies on the level of Jacobians and (3,3)(3,3)-isogenies on the level of Kummers are used to develop a genus two version of the supersingular isogeny Diffie--Hellman protocol of Jao and de~Feo. The genus two isogeny Diffie--Hellman protocol achieves the same level of security as SIDH but uses a prime with a third of the bit length

    Towards Post-Quantum Blockchain: A Review on Blockchain Cryptography Resistant to Quantum Computing Attacks

    Get PDF
    [Abstract] Blockchain and other Distributed Ledger Technologies (DLTs) have evolved significantly in the last years and their use has been suggested for numerous applications due to their ability to provide transparency, redundancy and accountability. In the case of blockchain, such characteristics are provided through public-key cryptography and hash functions. However, the fast progress of quantum computing has opened the possibility of performing attacks based on Grover's and Shor's algorithms in the near future. Such algorithms threaten both public-key cryptography and hash functions, forcing to redesign blockchains to make use of cryptosystems that withstand quantum attacks, thus creating which are known as post-quantum, quantum-proof, quantum-safe or quantum-resistant cryptosystems. For such a purpose, this article first studies current state of the art on post-quantum cryptosystems and how they can be applied to blockchains and DLTs. Moreover, the most relevant post-quantum blockchain systems are studied, as well as their main challenges. Furthermore, extensive comparisons are provided on the characteristics and performance of the most promising post-quantum public-key encryption and digital signature schemes for blockchains. Thus, this article seeks to provide a broad view and useful guidelines on post-quantum blockchain security to future blockchain researchers and developers.10.13039/501100010801-Xunta de Galicia (Grant Number: ED431G2019/01) 10.13039/501100011033-Agencia Estatal de InvestigaciĂłn (Grant Number: TEC2016-75067-C4-1-R and RED2018-102668-T) 10.13039/501100008530-European Regional Development FundXunta de Galicia; ED431G2019/0

    Action de Groupe SupersinguliÚres et Echange de Clés Post-quantique

    Get PDF
    Alice and Bob want to exchange information and make sure that an eavesdropper will not be able to listen to them, even with a quantum computer.To that aim they use cryptography and in particular a key-exchange protocol. These type of protocols rely on number theory and algebraic geometry. However current protocols are not quantum resistant, which is the reason why new cryptographic tools must be developed. One of these tools rely on isogenies, i.e. homomorphisms between elliptic curves. In this thesis the first contribution is an implementation of an isogeny-based key-exchange protocol resistant against side-channel attacks (timing and power consumption analysis, fault injection). We also generalize this protocol to a larger set of elliptic curves.Alice et Bob souhaitent Ă©changer des informations sans qu’un attaquant, mĂȘme muni d’un ordinateur quantique, puisse les entendre. Pour cela, ils ont recours Ă  la cryptologie et en particulier Ă  un protocole d’échange de clĂ©s. Ces protocoles reposent sur la thĂ©orie des nombres et la gĂ©omĂ©trie algĂ©brique. Cependant les protocoles actuellement utilisĂ©s ne rĂ©sistent pas aux attaques quantiques, c’est pourquoi il est nĂ©cessaire de dĂ©velopper de nouveaux outils cryptographiques. L’un de ces outils repose sur les isogĂ©nies, c’est-Ă -dire des homomorphismes entre des courbes elliptiques. Dans cette thĂšse nous proposons une implĂ©mentation d’un des protocoles d’échange de clĂ©s basĂ© sur les isogĂ©nies qui rĂ©siste aux attaques par canaux auxiliaires (Ă©tude de la durĂ©e d’exĂ©cution, de la consommation de courant et injection de fautes). Nous gĂ©nĂ©ralisons Ă©galement ce protocole Ă  un plus grand ensemble de courbes elliptiques

    Patient Zero and Patient Six: Zero-Value and Correlation Attacks on CSIDH and SIKE

    Get PDF
    Recent works have started side-channel analysis on SIKE and show the vulnerability of isogeny-based systems to zero-value attacks. In this work, we expand on such attacks by analyzing the behavior of the zero curve E0E_0 and six curve E6E_6 in CSIDH and SIKE. We demonstrate an attack on static-key CSIDH and SIKE implementations that recovers bits of the secret key by observing via zero-value-based resp. exploiting correlation-collision-based side-channel analysis whether secret isogeny walks pass over the zero or six curve. We apply this attack to fully recover secret keys of SIKE and two state-of-the-art CSIDH-based implementations: CTIDH and SQALE. We show the feasibility of exploiting side-channel information for the proposed attacks based on simulations with various realistic noise levels. Additionally, we discuss countermeasures to prevent zero-value and correlation-collision attacks against CSIDH and SIKE in our attacker model

    The Q-curve construction for endomorphism-accelerated elliptic curves

    Get PDF
    We give a detailed account of the use of Q\mathbb{Q}-curve reductions to construct elliptic curves over F_p2\mathbb{F}\_{p^2} with efficiently computable endomorphisms, which can be used to accelerate elliptic curve-based cryptosystems in the same way as Gallant--Lambert--Vanstone (GLV) and Galbraith--Lin--Scott (GLS) endomorphisms. Like GLS (which is a degenerate case of our construction), we offer the advantage over GLV of selecting from a much wider range of curves, and thus finding secure group orders when pp is fixed for efficient implementation. Unlike GLS, we also offer the possibility of constructing twist-secure curves. We construct several one-parameter families of elliptic curves over F_p2\mathbb{F}\_{p^2} equipped with efficient endomorphisms for every p \textgreater{} 3, and exhibit examples of twist-secure curves over F_p2\mathbb{F}\_{p^2} for the efficient Mersenne prime p=2127−1p = 2^{127}-1.Comment: To appear in the Journal of Cryptology. arXiv admin note: text overlap with arXiv:1305.540

    SIDH hybrid schemes with a classical component based on the discrete logarithm problem over finite field extension

    Get PDF
    The concept of a hybrid scheme with connection of SIDH and ECDH is nowadays very popular. In hardware implementations it is convenient to use a classical key exchange algorithm, which is based on the same finite field as SIDH. Most frequently used hybrid scheme is SIDH-ECDH. On the other hand, using the same field as in SIDH, one can construct schemes over \Fpn, like Diffie-Hellman or XTR scheme, whose security is based on the discrete logarithm problem. In this paper, idea of such schemes will be presented. The security of schemes, which are based on the discrete logarithm problem over fields \Fp, \Fpd, \Fpc, \Fps and \Fpo, for primes pp used in SIDH, will be analyzed. At the end, the propositions of practical applications of these schemes will be presented
    • 

    corecore